Stirling's approximation: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Added a reference.) |
Carl McBride (talk | contribs) m (Added values for 1!) |
||
Line 26: | Line 26: | ||
|- | |- | ||
| N || N! (exact) || N! (Stirling) || Error (%) | | N || N! (exact) || N! (Stirling) || Error (%) | ||
|- | |||
|1 || 1 || 0.92213700 || 8.44 | |||
|- | |- | ||
|2 || 2 || 1.91900435 || 4.22 | |2 || 2 || 1.91900435 || 4.22 |
Revision as of 20:21, 5 November 2008
Stirling's approximation is named after the Scottish mathematician James Stirling (1692-1770).
using Euler-MacLaurin formula one has
where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, ... are the Bernoulli numbers, and R is an error term which is normally small for suitable values of p.
Then, for large N,
after some further manipulation one arrives at (apparently Stirling's contribution was the prefactor of )
where
For example:
N | N! (exact) | N! (Stirling) | Error (%) |
1 | 1 | 0.92213700 | 8.44 |
2 | 2 | 1.91900435 | 4.22 |
3 | 6 | 5.83620959 | 2.81 |
4 | 24 | 23.5061751 | 2.10 |
5 | 120 | 118.019168 | 1.67 |
6 | 720 | 710.078185 | 1.40 |
7 | 5040 | 4980.39583 | 1.20 |
8 | 40320 | 39902.3955 | 1.05 |
9 | 362880 | 359536.873 | 0.93 |
10 | 3628800 | 3598695.62 | 0.84 |
When one is dealing with numbers of the order of the Avogadro constant () this formula is essentially exact. In computer simulations the number of atoms or molecules (N) is invariably greater than 100; for N=100 the percentage error is approximately 0.083%.
Applications in statistical mechanics
References
- J. Stirling "Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium", London (1730). English translation by J. Holliday "The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series" (1749)