Heat capacity: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Slight tidy.)
m (→‎At constant pressure: Added an internal link to pressure.)
Line 10: Line 10:
:<math>C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V </math>
:<math>C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V </math>
==At constant pressure==
==At constant pressure==
At constant pressure (denoted by the subscript <math>p</math>),
At constant [[pressure]] (denoted by the subscript <math>p</math>),
:<math>C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p</math>
:<math>C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p</math>


Line 16: Line 16:
The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by
The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by
:<math>C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math>C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p</math>
==Solids: Debye theory==
==Solids: Debye theory==
==References==
==References==
[[category: classical thermodynamics]]
[[category: classical thermodynamics]]

Revision as of 16:17, 4 December 2008

The heat capacity is defined as the differential of heat with respect to the temperature ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C := \frac{\delta Q}{\partial T} = T \frac{\partial S}{\partial T}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} is heat and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is the entropy.

At constant volume

From the first law of thermodynamics one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\delta Q\right. = dU + pdV}

thus at constant volume, denoted by the subscript , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dV=0} ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V }

At constant pressure

At constant pressure (denoted by the subscript Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} ),

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p}

where is the enthalpy. The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p}

Solids: Debye theory

References