Heat capacity: Difference between revisions
Carl McBride (talk | contribs) m (Slight tidy.) |
Carl McBride (talk | contribs) m (→At constant pressure: Added an internal link to pressure.) |
||
| Line 10: | Line 10: | ||
:<math>C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V </math> | :<math>C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V </math> | ||
==At constant pressure== | ==At constant pressure== | ||
At constant pressure (denoted by the subscript <math>p</math>), | At constant [[pressure]] (denoted by the subscript <math>p</math>), | ||
:<math>C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p</math> | :<math>C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p</math> | ||
| Line 16: | Line 16: | ||
The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by | The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by | ||
:<math>C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p</math> | :<math>C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p</math> | ||
==Solids: Debye theory== | ==Solids: Debye theory== | ||
==References== | ==References== | ||
[[category: classical thermodynamics]] | [[category: classical thermodynamics]] | ||
Revision as of 16:17, 4 December 2008
The heat capacity is defined as the differential of heat with respect to the temperature ,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C := \frac{\delta Q}{\partial T} = T \frac{\partial S}{\partial T}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} is heat and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is the entropy.
At constant volume
From the first law of thermodynamics one has
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\delta Q\right. = dU + pdV}
thus at constant volume, denoted by the subscript , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dV=0} ,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_V := \left.\frac{\delta Q}{\partial T} \right\vert_V = \left. \frac{\partial U}{\partial T} \right\vert_V }
At constant pressure
At constant pressure (denoted by the subscript Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} ),
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p := \left.\frac{\delta Q}{\partial T} \right\vert_p =\left.\frac{\partial H}{\partial T} \right\vert_p= \left. \frac{\partial U}{\partial T} \right\vert_p + p \left.\frac{\partial V}{\partial T} \right\vert_p}
where is the enthalpy. The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p -C_V = \left( p + \left. \frac{\partial U}{\partial V} \right\vert_T \right) \left. \frac{\partial V}{\partial T} \right\vert_p}