1-dimensional Ising model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 1: Line 1:
Model:
Consider a system with <math> N </math> spins in a row. The energy of the system will be given by
Consider a system with <math> N </math> spins in a row.
 
The energy of the system will be given by


:<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,  
:<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,  
Line 8: Line 5:
where each variable <math> S_j </math> can be either -1 or +1.
where each variable <math> S_j </math> can be either -1 or +1.


The partition function of the system will be:
The [[partition function]] of the system will be:


:<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,  
:<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,  
Line 35: Line 32:
:<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math>
:<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math>


The [[Helmholtz energy function]] in the thermodynamic limit will be
The [[Helmholtz energy function]] in the [[thermodynamic limit]] will be


:<math> A = - N k_B T \log \left( 2 \cosh K \right) </math>
:<math> A = - N k_B T \log \left( 2 \cosh K \right) </math>
 
==References==
[[Category: Models]]
[[Category: Models]]

Revision as of 12:08, 28 May 2007

Consider a system with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } spins in a row. The energy of the system will be given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} } ,

where each variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_j } can be either -1 or +1.

The partition function of the system will be:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = \sum_{\Omega^N } \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1} \right]} ,


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega^N } represents the possible configuration of the N spins of the system, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K = J/k_B T }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}}\sum_{S_{N}} e^{K S_{N-1} S_{N} } }

Performing the sum of the possible values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{N} } we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-2}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K S_{N-1} ) \right] }

Taking into account that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cosh(K) = \cosh(-K) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K ) \right] }

Therefore:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N} = \left( 2 \cosh K \right) Q_{N-1} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N }

The Helmholtz energy function in the thermodynamic limit will be

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = - N k_B T \log \left( 2 \cosh K \right) }

References