Charge equilibration for molecular dynamics simulations: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (partial save.)
Line 2: Line 2:
'''Charge equilibration''' (QEq) for [[molecular dynamics]] simulations <ref>[http://dx.doi.org/10.1021/ja00290a017 Wilfried J. Mortier, Karin Van Genechten, Johann Gasteiger "Electronegativity equalization: application and parametrization", Journal of the American Chemical Society '''107''' pp. 829-835 (1985)]</ref> <ref>[http://dx.doi.org/10.1021/j100161a070 Anthony K. Rappe and William A. Goddard III "Charge equilibration for molecular dynamics simulations", Journal of Physical Chemistry '''95''' pp. 3358-3363 (1991)]</ref> is a technique for calculating the distribution of charges
'''Charge equilibration''' (QEq) for [[molecular dynamics]] simulations <ref>[http://dx.doi.org/10.1021/ja00290a017 Wilfried J. Mortier, Karin Van Genechten, Johann Gasteiger "Electronegativity equalization: application and parametrization", Journal of the American Chemical Society '''107''' pp. 829-835 (1985)]</ref> <ref>[http://dx.doi.org/10.1021/j100161a070 Anthony K. Rappe and William A. Goddard III "Charge equilibration for molecular dynamics simulations", Journal of Physical Chemistry '''95''' pp. 3358-3363 (1991)]</ref> is a technique for calculating the distribution of charges
within a (large) molecule. This distribution can change with time to match changes in the local environment.
within a (large) molecule. This distribution can change with time to match changes in the local environment.
==Electronegativity and electronic hardness==
The atomic electronegativity is given by <ref>[http://dx.doi.org/10.1063/1.1749394 Robert S. Mulliken "A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities", Journal of Chemical Physics '''2''' pp. 782-793 (1934)]</ref>
:<math>\chi  = \frac{\mathrm{IP + EA} }{2} \approx \frac{\partial E}{\partial Q}</math>
where IP is the ionisation potential, and EA is the electron affinity. The  electronic hardness is given by <ref>[http://dx.doi.org/10.1021/ja00364a005 Robert G. Parr and Ralph G. Pearson "Absolute hardness: companion parameter to absolute electronegativity", Journal of the American Chemical Society '''105''' pp. 7512-7516 (1983)]</ref>
:<math>\eta = \mathrm{IP - EA} \approx  \frac{\partial^2 E}{\partial Q^2} </math>
==Charge equilibration potential energy==
==Split-charge formalism==
==Split-charge formalism==
<ref>[http://dx.doi.org/10.1063/1.2346671 Razvan A. Nistor, Jeliazko G. Polihronov, Martin H. Müser, and Nicholas J. Mosey "A generalization of the charge equilibration method for nonmetallic materials", Journal of Chemical Physics '''125''' 094108 (2006)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2346671 Razvan A. Nistor, Jeliazko G. Polihronov, Martin H. Müser, and Nicholas J. Mosey "A generalization of the charge equilibration method for nonmetallic materials", Journal of Chemical Physics '''125''' 094108 (2006)]</ref>
==Fluctuating-charge formalism==
====QTPIE====
<ref>[http://dx.doi.org/10.1016/j.cplett.2007.02.065 Jiahao Chen and Todd J. Martínez "QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics", Chemical Physics Letters '''438''' pp. 315-320 (2007)]</ref>
==References==
==References==
<references/>
<references/>

Revision as of 16:55, 27 April 2010

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Charge equilibration (QEq) for molecular dynamics simulations [1] [2] is a technique for calculating the distribution of charges within a (large) molecule. This distribution can change with time to match changes in the local environment.

Electronegativity and electronic hardness

The atomic electronegativity is given by [3]

where IP is the ionisation potential, and EA is the electron affinity. The electronic hardness is given by [4]

Charge equilibration potential energy

Split-charge formalism

[5]

Fluctuating-charge formalism

QTPIE

[6]


References

Related reading