Ewald sum: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Smooth particle mesh: Added a recent publication)
mNo edit summary
Line 3: Line 3:
==Particle mesh==
==Particle mesh==
*[http://dx.doi.org/10.1063/1.464397    Tom Darden, Darrin York, and Lee Pedersen "Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems", Journal of Chemical Physics '''98''' pp. 10089-10092 (1993)]
*[http://dx.doi.org/10.1063/1.464397    Tom Darden, Darrin York, and Lee Pedersen "Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems", Journal of Chemical Physics '''98''' pp. 10089-10092 (1993)]
====Smooth particle mesh====
====Smooth particle mesh (SPME)====
*[http://dx.doi.org/10.1063/1.470117    Ulrich Essmann, Lalith Perera,  Max L. Berkowitz,    Tom Darden, Hsing Lee, and Lee G. Pedersen "A smooth particle mesh Ewald method", Journal of Chemical Physics '''103''' pp. 8577-8593  (1995)]
*[http://dx.doi.org/10.1063/1.470117    Ulrich Essmann, Lalith Perera,  Max L. Berkowitz,    Tom Darden, Hsing Lee, and Lee G. Pedersen "A smooth particle mesh Ewald method", Journal of Chemical Physics '''103''' pp. 8577-8593  (1995)]
*[http://dx.doi.org/10.1063/1.3446812  Han Wang, Florian Dommert, and Christian Holm "Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency", Journal of Chemical Physics '''133''' 034117 (2010)]
*[http://dx.doi.org/10.1063/1.3446812  Han Wang, Florian Dommert, and Christian Holm "Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency", Journal of Chemical Physics '''133''' 034117 (2010)]

Revision as of 11:35, 21 July 2010

The Ewald sum technique, of a classical origin (Ref. 1) is widely used in order to simulate systems with long range interactions (typically, electrostatic interactions). Its aim is the computation of the interaction of a system with periodic boundary conditions with all its replicas. This is accomplished by the introduction of fictitious "charge clouds" that shield the charges. The interaction is then divided into a shielded part, which may be evaluated by the usual means, and a part that cancels the introduction of the clouds, which is evaluated in Fourier space.

Particle mesh

Smooth particle mesh (SPME)

Related pages

References

  1. Paul Ewald "Die Berechnung Optischer und Electrostatischer Gitterpotentiale", Annalen der Physik 64 pp. 253-287 (1921)
  2. S. G. Brush, H. L. Sahlin and E. Teller "Monte Carlo Study of a One-Component Plasma. I", Journal of Chemical Physics 45 pp. 2102- (1966)
  3. S. W. de Leeuw, J. W. Perram and E. R. Smith "Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 373 pp. 27-56 (1980)
  4. S. W. de Leeuw, J. W. Perram and E. R. Smith "Simulation of Electrostatic Systems in Periodic Boundary Conditions. II. Equivalence of Boundary Conditions", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 373 pp. 57-66 (1980)
  5. W. Smith; D. Fincham "The Ewald Sum in Truncated Octahedral and Rhombic Dodecahedral Boundary Conditions", Molecular Simulation 10 pp. 67-71 (1993)
  6. Paul E. Smith and B. Montgomery Pettitt "Efficient Ewald electrostatic calculations for large systems", Computer Physics Communications 91 pp. 339-344 (1995)
  7. Christopher J. Fennell and J. Daniel Gezelter "Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics", Journal of Chemical Physics 124 234104 (2006)

External resources