Semi-grand ensembles: Difference between revisions
No edit summary |
|||
| Line 32: | Line 32: | ||
# Consider the change <math> (N_1,N_2) \rightarrow (N,N_2) </math> | # Consider the change <math> (N_1,N_2) \rightarrow (N,N_2) </math> | ||
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^2 (\beta \mu_i) d N_i </math | |||
Revision as of 13:09, 5 March 2007
General Features
Semi-grand ensembles are used in Monte Carlo simulation of mixtures.
In this ensembles the total number of molecules is fixed, but the composition can change.
Canonical Ensemble: fixed volume, temperature and number(s) of molecules
We will consider a binary system;. In the Canonical Ensemble, the differential equation energy for the Helmholtz energy function can be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^2 (\beta \mu_i) d N_i } ,
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A } is the Helmholtz energy function
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \equiv 1/k_B T }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } is the internal energy
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_i } is the chemical potential of the species "i"
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_i } is the number of molecules of the species "i"
Semi-grand ensemble at fixed volume and temperature
Consider now that we want to consider a system with fixed total number of particles, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. N = N_1 + N_2 \right. } ;
but the composition can change, from the thermodynamics we can apply a Legendre's transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A (T,V,N_1,N_2) } .
- Consider the change Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (N_1,N_2) \rightarrow (N,N_2) }
- <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^2 (\beta \mu_i) d N_i </math