Critical points: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Reverted edits by Myrrhman (talk) to last revision by Carl McBride)
m (→‎Solid-liquid critical point: Added an internal link)
Line 28: Line 28:
==Solid-liquid critical point==
==Solid-liquid critical point==
It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz  
It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz  
<ref>L. D. Landau and E. M. Lifshitz, "Statistical Physics" (Course of Theoretical Physics, Volume 5) 3rd Edition Part 1, Chapter XIV, Pergamon Press (1980) &sect; 83 p. 258</ref>. However, recent work using the [[Z2 potential]] suggests that this may not be the last word on the subject.
<ref>L. D. Landau and E. M. Lifshitz, "Statistical Physics" (Course of Theoretical Physics, Volume 5) 3rd Edition Part 1, Chapter XIV, Pergamon Press (1980) &sect; 83 p. 258</ref>. However, recent work using the [[Z1 and Z2 potentials |Z2 potential]] suggests that this may not be the last word on the subject.
<ref>[http://dx.doi.org/10.1063/1.3213616 Måns Elenius and Mikhail Dzugutov "Evidence for a liquid-solid critical point in a simple monatomic system", Journal of Chemical Physics 131, 104502 (2009)]</ref>.
<ref>[http://dx.doi.org/10.1063/1.3213616 Måns Elenius and Mikhail Dzugutov "Evidence for a liquid-solid critical point in a simple monatomic system", Journal of Chemical Physics 131, 104502 (2009)]</ref>.
==Tricritical points==
==Tricritical points==
*[http://dx.doi.org/10.1103/PhysRevLett.24.715  Robert B. Griffiths "Thermodynamics Near the Two-Fluid Critical Mixing Point in He<sup>3</sup> - He<sup>4</sup>", Physical Review Letters '''24'''  715-717 (1970)]
*[http://dx.doi.org/10.1103/PhysRevLett.24.715  Robert B. Griffiths "Thermodynamics Near the Two-Fluid Critical Mixing Point in He<sup>3</sup> - He<sup>4</sup>", Physical Review Letters '''24'''  715-717 (1970)]

Revision as of 13:46, 2 November 2010

The critical point, discovered in 1822 by Charles Cagniard de la Tour [1][2] , is a point found at the end of the liquid-vapour coexistence curve (the red point shown on the pressure-temperature plot on the right). At this point the temperature is known as the critical temperature and the pressure is known as the critical pressure . For an interesting discourse on the "discovery" of the liquid-vapour critical point, the Bakerian Lecture of Thomas Andrews makes good reading [3]. Critical points are singularities in the partition function. In the critical point vicinity (Ref. [4] Eq. 17a)

and

For a review of the critical region see the work of Michael E. Fisher [5]

"... Turning now to the question of specific heats, it has long been known that real gases exhibit a large ``anomalous" specific-heat maximum above which lies near the critical isochore and which is not expected on classical theory..."

also

"... measurements (Ref. [6] ) of for argon along the critical isochore suggest strongly that . Such a result is again inconsistent with classical theory."

Thus in the vicinity of the liquid-vapour critical point, both the isothermal compressibility and the heat capacity at constant pressure diverge to infinity.

Liquid-liquid critical point

Solid-liquid critical point

It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz [7]. However, recent work using the Z2 potential suggests that this may not be the last word on the subject. [8].

Tricritical points

Critical exponents

Main article: Critical exponents

Yang-Yang anomaly

Main article: Yang-Yang anomaly

See also

References

Related reading