Soft sphere potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a recent publication)
m (→‎Glass transition: Added a recent publication)
Line 63: Line 63:
|}
|}
==Glass transition==
==Glass transition==
<ref>[http://dx.doi.org/10.1063/1.3266845 D. M. Heyes, S. M. Clarke, and A. C. Brańka "Soft-sphere soft glasses", Journal of Chemical Physics '''131''' 204506 (2009)]</ref>
<ref>[http://dx.doi.org/10.1063/1.3266845 D. M. Heyes, S. M. Clarke, and A. C. Brańka "Soft-sphere soft glasses", Journal of Chemical Physics '''131''' 204506 (2009)]</ref><ref>[http://dx.doi.org/10.1063/1.3554378 Junko Habasaki and Akira Ueda "Several routes to the glassy states in the one component soft core system: Revisited by molecular dynamics", Journal of Chemical Physics '''134''' 084505 (2011)]</ref>
 
==Transport coefficients==
==Transport coefficients==
<ref>[http://dx.doi.org/10.1080/00268970802712563 D. M. Heyes and A. C. Branka "Density and pressure dependence of the equation of state and transport coefficients of soft-sphere fluids", Molecular Physics '''107''' pp. 309-319 (2009)]</ref>
<ref>[http://dx.doi.org/10.1080/00268970802712563 D. M. Heyes and A. C. Branka "Density and pressure dependence of the equation of state and transport coefficients of soft-sphere fluids", Molecular Physics '''107''' pp. 309-319 (2009)]</ref>

Revision as of 10:06, 1 March 2011

The soft sphere potential is defined as

where is the intermolecular pair potential between two soft spheres separated by a distance , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } is the interaction strength and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the diameter of the sphere. Frequently the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is taken to be 12, thus the model effectively becomes the high temperature limit of the Lennard-Jones model [1]. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\rightarrow \infty} one has the hard sphere model. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \le 3} no thermodynamically stable phases are found.

Equation of state

The soft-sphere equation of state[2] has recently been studied by Tan, Schultz and Kofke[3] and expressed in terms of Padé approximants. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT/\epsilon=1.0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=6} one has (Eq. 8):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{n=6} = \frac{1 + 7.432255 \rho + 23.854807 \rho^2 + 40.330195 \rho^3 + 34.393896 \rho^4 + 10.723480 \rho^5}{1+ 3.720037 \rho + 4.493218 \rho^2 + 1.554135 \rho^3}}


and for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=9} one has (Eq. 9):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{n=9} = \frac{1 + 3.098829 \rho + 5.188915 \rho^2 + 5.019851 \rho^3 + 2.673385 \rho^4 + 0.601529 \rho^5}{1+ 0.262771 \rho + 0.168052 \rho^2 - 0.010554 \rho^3}}

Virial coefficients

Tan, Schultz and Kofke[3] have calculated the virial coefficients at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT/\epsilon=1.0} (Table 1):

n=12 n=9 n=6
3.79106644 4.27563423 5.55199919
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_4} 3.52761(6) 3.43029(7) 1.44261(4)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5} 2.1149(2) 1.08341(7) -1.68834(9)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_6} 0.7695(2) -0.21449(11) 1.8935(5)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_7} 0.0908(5) -0.0895(7) -1.700(3)
-0.074(2) 0.071(4) 0.44(2)

Melting point

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=12}

pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {melting}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {freezing}}} Reference
22.66(1) 1.195(6) 1.152(6) Table 1 [4]
23.24(4) 1.2035(6) 1.1602(7) Table 2 [3]

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=9}

pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {freezing}}} Reference
36.36(10) 1.4406(12) 1.4053(14) Table 3 [3]

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=6}

pressure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {melting}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{\mathrm {freezing}}} Reference
100.1(3) 2.320(2) 2.295(2) Table 4 [3]

Glass transition

[5][6]

Transport coefficients

[7]

Radial distribution function

[8]

References

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.