Semi-grand ensembles: Difference between revisions
Line 24: | Line 24: | ||
== Semi-grand ensemble at fixed volume and temperature == | == Semi-grand ensemble at fixed volume and temperature == | ||
Consider now that we | Consider now that we wish to consider a system with fixed total number of particles, <math> N </math> | ||
: <math> \left. N = \sum_{i=1}^c N_i \right. </math>; | : <math> \left. N = \sum_{i=1}^c N_i \right. </math>; | ||
but the composition can change, from | but the composition can change, from thermodynamic considerations one can apply a [[Legendre transform]] [HAVE TO CHECK ACCURACY] | ||
to the differential equation written above in terms of <math> A (T,V,N_1,N_2) </math>. | to the differential equation written above in terms of <math> A (T,V,N_1,N_2) </math>. | ||
Line 39: | Line 39: | ||
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N + \sum_{i=2}^c \beta (\mu_2-\mu_i) d N_i; </math> | : <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N + \sum_{i=2}^c \beta (\mu_2-\mu_i) d N_i; </math> | ||
or, | |||
: <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N + \sum_{i=2}^c \beta \mu_{i1} d N_i; </math> | : <math> d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N + \sum_{i=2}^c \beta \mu_{i1} d N_i; </math> | ||
where <math> \left. \mu_{i1} \equiv \mu_i - \mu_1 \right. </math>. | where <math> \left. \mu_{i1} \equiv \mu_i - \mu_1 \right. </math>. | ||
* Now considering the thermodynamical potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> | * Now considering the [[thermodynamical potential]]: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> | ||
:<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - N_2 d \left( \beta \mu_{21} \right). | :<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - N_2 d \left( \beta \mu_{21} \right). |
Revision as of 17:46, 5 March 2007
General features
Semi-grand ensembles are used in Monte Carlo simulation of mixtures.
In these ensembles the total number of molecules is fixed, but the composition can change.
Canonical ensemble: fixed volume, temperature and number(s) of molecules
We shall consider a system consisting of c components;. In the canonical ensemble, the differential equation energy for the Helmholtz energy function can be written as:
- ,
where:
- is the Helmholtz energy function
- is the Boltzmann constant
- is the absolute temperature
- is the internal energy
- is the pressure
- is the chemical potential of the species
- is the number of molecules of the species
Semi-grand ensemble at fixed volume and temperature
Consider now that we wish to consider a system with fixed total number of particles,
- ;
but the composition can change, from thermodynamic considerations one can apply a Legendre transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of .
- Consider the variable change i.e.:
or,
where .
- Now considering the thermodynamical potential:
Fixed pressure and temperature
In the Isothermal-Isobaric ensemble: ensemble we can write:
where:
- is the Gibbs energy function
Fixed pressure and temperature: Semi-grand ensemble
Following the procedure described above we can write:
, where the new thermodynamical Potential is given by:
Fixed pressure and temperature: Semi-grand ensemble: Partition function
TO BE CONTINUED SOON