|  |  | 
| Line 69: | Line 69: | 
|  | </math> |  | </math> | 
|  | 
 |  | 
 | 
|  | ==  Fixed pressure and temperature: Semi-grand ensemble: Partition function == |  | ==  Fixed pressure and temperature: Semi-grand ensemble: partition function == | 
|  | 
 |  | 
 | 
|  | In the fixed composition ensemble we will have: |  | In the fixed composition ensemble one has: | 
|  | 
 |  | 
 | 
|  | <math> Q_{N_i,p,T} = \frac{ \beta p }{\prod_{i=1}^c \left( \Lambda_i^{3N_i} N_i! \right) } \int_{0}^{\infty} dV e^{-\beta p V } V^N |  | :<math> Q_{N_i,p,T} = \frac{ \beta p }{\prod_{i=1}^c \left( \Lambda_i^{3N_i} N_i! \right) } \int_{0}^{\infty} dV e^{-\beta p V } V^N | 
|  |   \int \left( \prod_{i=1}^c d (R_i^*)^{3N_i} \right) \exp \left[ - \beta U \left( V, (R_1^*)^{3N_1} , \cdots \right) \right].   |  |   \int \left( \prod_{i=1}^c d (R_i^*)^{3N_i} \right) \exp \left[ - \beta U \left( V, (R_1^*)^{3N_1} , \cdots \right) \right].   | 
|  | </math> |  | </math> | 
|  | 
 |  | 
|  | TO BE CONTINUED SOON
 |  | 
		Revision as of 18:10, 6 March 2007
General features
Semi-grand ensembles are used in Monte Carlo simulation of mixtures. In these ensembles the total number of molecules is fixed, but the composition can change.
Canonical ensemble: fixed volume, temperature and number(s) of molecules
We shall consider a system consisting of c components;. 
In the canonical ensemble, the differential
equation energy for the Helmholtz energy function can be written as:
 , ,
where:
Semi-grand ensemble at fixed volume and temperature
Consider now that we wish to consider a system with fixed total number of particles,  
 ; ;
but the composition can change, from thermodynamic considerations one can apply a Legendre transform [HAVE TO CHECK ACCURACY]
to the differential equation written above in terms of  .
. 
- Consider the variable change  i.e.: i.e.: 
 
 
or,
 
where  .
.
- Now considering the thermodynamical potential:  
![{\displaystyle d\left[\beta A-\sum _{i=2}^{c}(\beta \mu _{i1}N_{i})\right]=Ed\beta -\left(\beta p\right)dV+\beta \mu _{1}dN-N_{2}d\left(\beta \mu _{21}\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1433629d7e037f8d3eeb8aa3a55db3e3a3085707) 
Fixed pressure and temperature
In the Isothermal-Isobaric ensemble:  one can write:
 one can write:
 
where:
Fixed pressure and temperature: Semi-grand ensemble
Following the procedure described above one can write:
 , ,
where the new thermodynamical Potential  is given by:
 is given by:
![{\displaystyle d(\beta \Phi )=d\left[\beta G-\sum _{i=2}^{c}(\beta \mu _{i1}N_{i})\right]=Ed\beta +Vd(\beta p)+\beta \mu _{1}dN-\sum _{i=2}^{c}N_{i}d(\beta \mu _{i1}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f9ecb6a938d9b13ec7be5a28a8ecdf34dd065651) 
Fixed pressure and temperature: Semi-grand ensemble: partition function
In the fixed composition ensemble one has:
![{\displaystyle Q_{N_{i},p,T}={\frac {\beta p}{\prod _{i=1}^{c}\left(\Lambda _{i}^{3N_{i}}N_{i}!\right)}}\int _{0}^{\infty }dVe^{-\beta pV}V^{N}\int \left(\prod _{i=1}^{c}d(R_{i}^{*})^{3N_{i}}\right)\exp \left[-\beta U\left(V,(R_{1}^{*})^{3N_{1}},\cdots \right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/04e0111c9152df95a0f85133726f8a9fb4e1c809)