Semi-grand ensembles: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 69: Line 69:
</math>
</math>


==  Fixed pressure and temperature: Semi-grand ensemble: Partition function ==
==  Fixed pressure and temperature: Semi-grand ensemble: partition function ==


In the fixed composition ensemble we will have:
In the fixed composition ensemble one has:


<math> Q_{N_i,p,T} = \frac{ \beta p }{\prod_{i=1}^c \left( \Lambda_i^{3N_i} N_i! \right) } \int_{0}^{\infty} dV e^{-\beta p V } V^N
:<math> Q_{N_i,p,T} = \frac{ \beta p }{\prod_{i=1}^c \left( \Lambda_i^{3N_i} N_i! \right) } \int_{0}^{\infty} dV e^{-\beta p V } V^N
  \int \left( \prod_{i=1}^c d (R_i^*)^{3N_i} \right) \exp \left[ - \beta U \left( V, (R_1^*)^{3N_1} , \cdots \right) \right].  
  \int \left( \prod_{i=1}^c d (R_i^*)^{3N_i} \right) \exp \left[ - \beta U \left( V, (R_1^*)^{3N_1} , \cdots \right) \right].  
</math>
</math>
TO BE CONTINUED SOON

Revision as of 18:10, 6 March 2007

General features

Semi-grand ensembles are used in Monte Carlo simulation of mixtures. In these ensembles the total number of molecules is fixed, but the composition can change.

Canonical ensemble: fixed volume, temperature and number(s) of molecules

We shall consider a system consisting of c components;. In the canonical ensemble, the differential equation energy for the Helmholtz energy function can be written as:

,

where:

Semi-grand ensemble at fixed volume and temperature

Consider now that we wish to consider a system with fixed total number of particles,

;

but the composition can change, from thermodynamic considerations one can apply a Legendre transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of .

  • Consider the variable change i.e.:



or,

where .

  • Now considering the thermodynamical potential:

Fixed pressure and temperature

In the Isothermal-Isobaric ensemble: one can write:

where:

Fixed pressure and temperature: Semi-grand ensemble

Following the procedure described above one can write:

,

where the new thermodynamical Potential is given by:

Fixed pressure and temperature: Semi-grand ensemble: partition function

In the fixed composition ensemble one has: