Supercooling and nucleation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a subsection headding)
m (→‎References: Removed duplicate reference)
Line 30: Line 30:
*[http://dx.doi.org/10.1063/1.3506838 Laura Filion, Michiel Hermes, Ran Ni and Marjolein Dijkstra "Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques", Journal of Chemical Physics '''133''' 244115 (2010)]
*[http://dx.doi.org/10.1063/1.3506838 Laura Filion, Michiel Hermes, Ran Ni and Marjolein Dijkstra "Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques", Journal of Chemical Physics '''133''' 244115 (2010)]
*[http://dx.doi.org/10.1103/PhysRevLett.105.088302 Ran Ni, Simone Belli, René van Roij, and Marjolein Dijkstra "Glassy Dynamics, Spinodal Fluctuations, and the Kinetic Limit of Nucleation in Suspensions of Colloidal Hard Rods", Physical Review Letters '''105''' 088302 (2010)]
*[http://dx.doi.org/10.1103/PhysRevLett.105.088302 Ran Ni, Simone Belli, René van Roij, and Marjolein Dijkstra "Glassy Dynamics, Spinodal Fluctuations, and the Kinetic Limit of Nucleation in Suspensions of Colloidal Hard Rods", Physical Review Letters '''105''' 088302 (2010)]
*[http://dx.doi.org/10.1016/j.physrep.2009.03.003  Andrea Cavagna  "Supercooled liquids for pedestrians", Physics Reports '''476''' pp. 51-124 (2009)]
;Books
;Books
*[http://dx.doi.org/10.1016/S0081-1947(08)60604-9 David T. Wu "Nucleation Theory", Solid State Physics '''50''' pp. 37-187 (1996)]
*[http://dx.doi.org/10.1016/S0081-1947(08)60604-9 David T. Wu "Nucleation Theory", Solid State Physics '''50''' pp. 37-187 (1996)]

Revision as of 17:19, 1 February 2012

Supercooling, undercooling and nucleation.

Volmer and Weber kinetic model

Volmer and Weber kinetic model [1] results in the following nucleation rate:

Failed to parse (unknown function "\label"): {\displaystyle I^{VW} = N^{eq}(n^*) k^+(n^*) = k^+(n^*) N_A \exp \left( -\frac{W(n^*)}{k_BT} \right) \label{eq_IVW} }

Szilard nucleation model

Homogeneous nucleation temperature

The homogeneous nucleation temperature () is the temperature below which it is almost impossible to avoid spontaneous and rapid freezing.

Zeldovich factor

The Zeldovich factor [2] () modifies the Volmer and Weber expression \eqref{eq_IVW}, making it applicable to spherical clusters:

Zeldovich-Frenkel equation

Zeldovich-Frenkel master equation is given by

See also Shizgal and Barrett [3].

Nucleation theorem

See also

References

  1. M. Volmer and A. Weber "Keimbildung in übersättigten Gebilden", Zeitschrift für Physikalische Chemie 119 pp. 277-301 (1926)
  2. J. B. Zeldovich "On the theory of new phase formation, cavitation", Acta Physicochimica URSS 18 pp. 1-22 (1943)
  3. B. Shizgal and J. C. Barrett "Time dependent nucleation", Journal of Chemical Physics 91 pp. 6505-6518 (1989)
Related reading
Books