Oblate hard spherocylinders: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→References: ~Added a recent publication) |
|||
Line 21: | Line 21: | ||
*[http://dx.doi.org/10.1103/PhysRevE.49.3179 J. Šedlbauer, S. Labík, and A. Malijevský "Monte Carlo and integral-equation studies of hard-oblate-spherocylinder fluids", Physical Preview E '''49''' pp. 3179-3183 (1994)] | *[http://dx.doi.org/10.1103/PhysRevE.49.3179 J. Šedlbauer, S. Labík, and A. Malijevský "Monte Carlo and integral-equation studies of hard-oblate-spherocylinder fluids", Physical Preview E '''49''' pp. 3179-3183 (1994)] | ||
*[http://dx.doi.org/10.1080/08927020902833111 Bruno Martinez-Haya and Alejandro Cuetos "Simulation study of discotic molecules in the vicinity of the isotropic-liquid crystal transition", Molecular Simulation '''35''' pp. 1077-1083 (2009)] | *[http://dx.doi.org/10.1080/08927020902833111 Bruno Martinez-Haya and Alejandro Cuetos "Simulation study of discotic molecules in the vicinity of the isotropic-liquid crystal transition", Molecular Simulation '''35''' pp. 1077-1083 (2009)] | ||
*[http://dx.doi.org/10.1080/00268976.2011.649794 L. Wu, H.H. Wensink, G. Jackson and E.A. Müller "A generic equation of state for liquid crystalline phases of hard-oblate particles", Molecular Physics '''110''' pp. 1269-1288 (2012)] | |||
[[Category: Models]] | [[Category: Models]] |
Revision as of 10:36, 19 June 2012
The oblate hard spherocylinder model [1], also known as a discotic spherocylinder, consists of an impenetrable cylinder, surrounded by a torus whose major radius is equal to the radius of the cylinder, and whose minor radius is equal to half of the height of the cylinder. In the limit of zero diameter the oblate hard spherocylinder becomes a hard sphere, and in the limit of zero width one has the hard disk. A closely related model is that of the hard spherocylinder.
Overlap algorithm
An overlap algorithm is provided in the appendix of [2].
Excluded volume
Virial coefficients
Isotropic-nematic transition
Isotropic-nematic phase transition [6].
Columnar phase
Oblate hard spherocylinders form a columnar phase [7]
See also
References
- ↑ M. Wojcik and K. E. Gubbins "Thermodynamics and structure of hard oblate spherocylinder fluids", Molecular Physics 53 pp. 397-420 (1984)
- ↑ Matthieu Marechal, Alejandro Cuetos, Bruno Martínez-Haya, and Marjolein Dijkstra " Phase behavior of hard colloidal platelets using free energy calculations", Journal of Chemical Physics 134 094501 (2011)
- ↑ Bela M. Mulder "The excluded volume of hard sphero-zonotopes", Molecular Physics 103 pp. 1411-1424 (2005)
- ↑ I. Nezbeda and T. Boublík "Hard oblate spherocylinders: Monte carlo virial coefficients", Czechoslovak Journal of Physics 27 pp. 953-956 (1977)
- ↑ W. R. Cooney, S. M. Thompson and K. E. Gubbins "Virial coefficients for the hard oblate spherocylinder fluid", Molecular Physics 66 pp. 1269-1272 (1989)
- ↑ F. Gámez, P.J. Merkling and S. Lago "Parsons–Lee approach for oblate hard spherocylinders", Chemical Physics Letters 494 pp. 45-49 (2010)
- ↑ Alejandro Cuetos and Bruno Martínez-Haya "Columnar phases of discotic spherocylinders", Journal of Chemical Physics 129 214706 (2008)
- Related reading
- J. Šedlbauer, S. Labík, and A. Malijevský "Monte Carlo and integral-equation studies of hard-oblate-spherocylinder fluids", Physical Preview E 49 pp. 3179-3183 (1994)
- Bruno Martinez-Haya and Alejandro Cuetos "Simulation study of discotic molecules in the vicinity of the isotropic-liquid crystal transition", Molecular Simulation 35 pp. 1077-1083 (2009)
- L. Wu, H.H. Wensink, G. Jackson and E.A. Müller "A generic equation of state for liquid crystalline phases of hard-oblate particles", Molecular Physics 110 pp. 1269-1288 (2012)