Building up a face centered cubic lattice: Difference between revisions
Carl McBride (talk | contribs) (Added Jmol + category.) |
No edit summary |
||
| Line 48: | Line 48: | ||
[[category: computer simulation techniques]] | [[category: computer simulation techniques]] | ||
[[category: Contains Jmol]] | [[category: Contains Jmol]] | ||
x=j+k,y=k+i,z=i+j | |||
Revision as of 11:50, 24 June 2012
<jmol> <jmolApplet> <script>set spin X 10; spin on</script> <size>200</size> <color>lightgrey</color> <wikiPageContents>Face_centered_cubic_lattice.xyz</wikiPageContents> </jmolApplet></jmol> |
- Consider:
- a cubic simulation box whose sides are of length
- a number of lattice positions, given by ,
with being a positive integer
- The positions are those given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \begin{array}{l} x_a = i_a \times (\delta l) \\ y_a = j_a \times (\delta l) \\ z_a = k_a \times (\delta l) \end{array} \right\} }
where the indices of a given valid site are integer numbers that must fulfill the following criteria
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le i_a < 2m }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le j_a < 2m }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le k_a < 2m } ,
- the sum of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. i_a + j_a + k_a \right. } must be, for instance, an even number.
with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \delta l = L/(2m) \right. }
Atomic position(s) on a cubic cell
- Number of atoms per cell: 4
- Coordinates:
Atom 1: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) }
Atom 2: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) }
Atom 3: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_3, y_3, z_2 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) }
Atom 4: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_4, y_4, z_2 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0 \right) }
Cell dimensions:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \beta = \gamma = 90^0 }
x=j+k,y=k+i,z=i+j