Building up a diamond lattice: Difference between revisions
mNo edit summary |
|||
| Line 34: | Line 34: | ||
== Atomic position(s) on a cubic cell == | == Atomic position(s) on a cubic cell == | ||
* Number of atoms per cell: | * Number of atoms per cell: 8 | ||
* Coordinates: | * Coordinates: | ||
Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | ||
| Line 40: | Line 40: | ||
Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math> | Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math> | ||
Atom 3: <math> \left( x_3, y_3, | Atom 3: <math> \left( x_3, y_3, z_3 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) </math> | ||
Atom 4: <math> \left( x_4, y_4, | Atom 4: <math> \left( x_4, y_4, z_4 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0 \right) </math> | ||
Atom 5: <math> \left( x_5, y_5, z_5 \right) = \left( \frac{l}{4}, \frac{l}{4}, \frac{l}{4} \right) </math> | |||
Atom 6: <math> \left( x_6, y_6, z_6 \right) = \left( \frac{l}{4}, \frac{3l}{4}, \frac{3l}{4} \right) </math> | |||
Atom 7: <math> \left( x_7, y_7, z_7 \right) = \left( \frac{3l}{4}, \frac{l}{4}, \frac{3l}{4} \right) </math> | |||
Atom 8: <math> \left( x_8, y_8, z_8 \right) = \left( \frac{3l}{4}, \frac{3l}{4}, \frac{l}{4} \right) </math> | |||
Cell dimensions: | Cell dimensions: | ||
Revision as of 17:42, 20 March 2007
[EN CONSTRUCCION]
- Consider:
- a cubic simulation box whose sides are of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L \right. }
- a number of lattice positions, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. M \right. } given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. M = 8 m^3 \right. } ,
with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m } being a positive integer
- The Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. M \right. } positions are those given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \begin{array}{l} x_a = i_a \times (\delta l) \\ y_a = j_a \times (\delta l) \\ z_a = k_a \times (\delta l) \end{array} \right\} }
where the indices of a given valid site are integer numbers that must fulfill the following criteria
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le i_a < 4m }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le j_a < 4m }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le k_a < 4m } ,
- the sum of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. i_a + j_a + k_a \right. } can have only the values: 0, 3, 4, 7, 8, 10, ...
i.e, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. i_a + j_a + k_a = 4 n \right. } ; OR; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. i_a + j_a + k_a = 4 n + 3 \right. } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } being any integer number
- the indices must be either all even or all odd.
with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \delta l = L/(4m) \right. }
Atomic position(s) on a cubic cell
- Number of atoms per cell: 8
- Coordinates:
Atom 1: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) }
Atom 2: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) }
Atom 3: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_3, y_3, z_3 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) }
Atom 4:
Atom 5: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_5, y_5, z_5 \right) = \left( \frac{l}{4}, \frac{l}{4}, \frac{l}{4} \right) }
Atom 6: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_6, y_6, z_6 \right) = \left( \frac{l}{4}, \frac{3l}{4}, \frac{3l}{4} \right) }
Atom 7: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_7, y_7, z_7 \right) = \left( \frac{3l}{4}, \frac{l}{4}, \frac{3l}{4} \right) }
Atom 8: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_8, y_8, z_8 \right) = \left( \frac{3l}{4}, \frac{3l}{4}, \frac{l}{4} \right) }
Cell dimensions:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \beta = \gamma = 90^0 }