Kern and Frenkel patchy model: Difference between revisions
Carl McBride (talk | contribs) m (→Single-bond-per-patch-condition: Trivial typesetting) |
Lrovigatti (talk | contribs) No edit summary |
||
| Line 28: | Line 28: | ||
where <math>\delta</math> is the solid angle of a patch (<math>\alpha, \beta, ...</math>) whose axis is <math>\hat{e}</math> (see Fig. 1 of Ref. 1), forming a conical segment. | where <math>\delta</math> is the solid angle of a patch (<math>\alpha, \beta, ...</math>) whose axis is <math>\hat{e}</math> (see Fig. 1 of Ref. 1), forming a conical segment. | ||
==Two patches== | ==Two patches== | ||
The "two-patch" Kern and Frenkel model has been extensively studied by Sciortino and co-workers <ref>[http://dx.doi.org/10.1063/1.2730797 F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia "Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation", Journal of Chemical Physics '''126''' 194903 (2007)]</ref><ref>[http://dx.doi.org/10.1063/1.3415490 Achille Giacometti, Fred Lado, Julio Largo, Giorgio Pastore, and Francesco Sciortino "Effects of patch size and number within a simple model of patchy colloids", Journal of Chemical Physics 132, 174110 (2010)]</ref><ref>[http://dx.doi.org/10.1063/1.4737930 José Maria Tavares, Lorenzo Rovigatti, and Francesco Sciortino "Quantitative description of the self-assembly of patchy particles into chains and rings", Journal of Chemical Physics '''137''' 044901 (2012)]</ref>. | The "two-patch" Kern and Frenkel model has been extensively studied by Sciortino and co-workers <ref name="bianchi">[http://dx.doi.org/10.1063/1.2730797 F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia "Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation", Journal of Chemical Physics '''126''' 194903 (2007)]</ref><ref>[http://dx.doi.org/10.1063/1.3415490 Achille Giacometti, Fred Lado, Julio Largo, Giorgio Pastore, and Francesco Sciortino "Effects of patch size and number within a simple model of patchy colloids", Journal of Chemical Physics 132, 174110 (2010)]</ref><ref name="rovigatti">[http://dx.doi.org/10.1063/1.4737930 José Maria Tavares, Lorenzo Rovigatti, and Francesco Sciortino "Quantitative description of the self-assembly of patchy particles into chains and rings", Journal of Chemical Physics '''137''' 044901 (2012)]</ref>. | ||
==Four patches== | ==Four patches== | ||
| Line 40: | Line 40: | ||
</math> | </math> | ||
then the patch cannot be involved in more than one bond. | then the patch cannot be involved in more than one bond. Enforcing this condition makes it possible to compare the simulations results with Wertheim theory <ref name="bianchi"/><ref name="rovigatti"/> | ||
==References== | ==References== | ||
Revision as of 15:59, 26 December 2012
The Kern and Frenkel [1] patchy model is an amalgamation of the hard sphere model with attractive square well patches (HSSW). The potential has an angular aspect, given by (Eq. 1)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}({\mathbf r}_{ij}; \tilde{{\mathbf \Omega}}_i, \tilde{{\mathbf \Omega}}_j) =\Phi_{ij}^{ \mathrm{HSSW}}({\mathbf r}_{ij}) \cdot f(\tilde{{\mathbf \Omega}}_i, \tilde{{\mathbf \Omega}}_j) }
where the radial component is given by the square well model (Eq. 2)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}^{ \mathrm{HSSW}} \left({\mathbf r}_{ij} \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ - \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }
and the orientational component is given by (Eq. 3)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ij} \left(\hat{ {\mathbf r}}_{ij}; \tilde{{\mathbf \Omega}}_i, \tilde{{\mathbf \Omega}}_j \right) = \left\{ \begin{array}{clc} 1 & \mathrm{if} & \left\{ \begin{array}{ccc} & (\hat{e}_\alpha\cdot\hat{r}_{ij} \leq \cos \delta) & \mathrm{for~some~patch~\alpha~on~}i \\ \mathrm{and} & (\hat{e}_\beta\cdot\hat{r}_{ji} \leq \cos \delta) & \mathrm{for~some~patch~\beta~on~}j \end{array} \right. \\ 0 & \mathrm{otherwise} & \end{array} \right. }
where is the solid angle of a patch (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha, \beta, ...} ) whose axis is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{e}} (see Fig. 1 of Ref. 1), forming a conical segment.
Two patches
The "two-patch" Kern and Frenkel model has been extensively studied by Sciortino and co-workers [2][3][4].
Four patches
- Main article: Anisotropic particles with tetrahedral symmetry
Single-bond-per-patch-condition
If the two parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} fullfil the condition
then the patch cannot be involved in more than one bond. Enforcing this condition makes it possible to compare the simulations results with Wertheim theory [2][4]
References
- ↑ Norbert Kern and Daan Frenkel "Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction", Journal of Chemical Physics 118, 9882 (2003)
- ↑ 2.0 2.1 F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia "Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation", Journal of Chemical Physics 126 194903 (2007)
- ↑ Achille Giacometti, Fred Lado, Julio Largo, Giorgio Pastore, and Francesco Sciortino "Effects of patch size and number within a simple model of patchy colloids", Journal of Chemical Physics 132, 174110 (2010)
- ↑ 4.0 4.1 José Maria Tavares, Lorenzo Rovigatti, and Francesco Sciortino "Quantitative description of the self-assembly of patchy particles into chains and rings", Journal of Chemical Physics 137 044901 (2012)
- Related reading
- Christoph Gögelein, Flavio Romano, Francesco Sciortino, and Achille Giacometti "Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory", Journal of Chemical Physics 136 094512 (2012)
- Emanuela Bianchi, Günther Doppelbauer, Laura Filion, Marjolein Dijkstra, and Gerhard Kahl "Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms", Journal of Chemical Physics 136 214102 (2012)