Stockmayer potential: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 21: | Line 21: | ||
For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential. | For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential. | ||
==Critical properties== | ==Critical properties== | ||
In the range <math>0 \leq \mu^* \leq 2.45</math> <ref>[http://dx.doi.org/10.1080/00268979400100294 M. E. Van | In the range <math>0 \leq \mu^* \leq 2.45</math> <ref>[http://dx.doi.org/10.1080/00268979400100294 M.E. Van Leeuwen "Deviation from corresponding-states behaviour for polar fluids", Molecular Physics '''82''' pp. 383-392 (1994)]</ref>: | ||
:<math>T_c^* = 1.313 + 0.2999\mu^{*2} -0.2837 \ln(\mu^{*2} +1)</math> | :<math>T_c^* = 1.313 + 0.2999\mu^{*2} -0.2837 \ln(\mu^{*2} +1)</math> | ||
:<math>\rho_c^* = 0.3009 - 0.00785\mu^{*2} - 0.00198\mu^{*4}</math> | :<math>\rho_c^* = 0.3009 - 0.00785\mu^{*2} - 0.00198\mu^{*4}</math> |
Revision as of 00:48, 16 February 2013
The Stockmayer potential consists of the Lennard-Jones model with an embedded point dipole. Thus the Stockmayer potential becomes (Eq. 1 [1]):
where:
- is the intermolecular pair potential between two particles at a distance
- is the diameter (length), i.e. the value of at
- represents the well depth (energy)
- is the permittivity of the vacuum
- is the dipole moment
- and are the angles associated with the inclination of the two dipole axes with respect to the intermolecular axis.
- is the azimuth angle between the two dipole moments
If one defines a reduced dipole moment, , such that:
one can rewrite the expression as
For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.
Critical properties
In the range [2]:
Bridge function
A bridge function for use in integral equations has been calculated by Puibasset and Belloni [3].
References
- ↑ W. H. Stockmayer "Second Virial Coefficients of Polar Gases", Journal of Chemical Physics 9 pp. 398-402 (1941)
- ↑ M.E. Van Leeuwen "Deviation from corresponding-states behaviour for polar fluids", Molecular Physics 82 pp. 383-392 (1994)
- ↑ Joël Puibasset and Luc Belloni "Bridge function for the dipolar fluid from simulation", Journal of Chemical Physics 136 154503 (2012)
Related reading
- M. E. van Leeuwen "Derivation of Stockmayer potential parameters for polar fluids", Fluid Phase Equilibria 99 pp. 1-18 (1994)
- Osvaldo H. Scalise "On the phase equilibrium Stockmayer fluids", Fluid Phase Equilibria 253 pp. 171–175 (2007)
- Reinhard Hentschke, Jörg Bartke, and Florian Pesth "Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid", Physical Review E 75 011506 (2007)