Mie potential: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Slight tidy) |
Carl McBride (talk | contribs) (Added a recent publication) |
||
Line 1: | Line 1: | ||
The '''Mie potential''' was proposed by Gustav Mie in 1903 <ref>[http://dx.doi.org/10.1002/andp.19033160802 Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik '''11''' pp. 657-697 (1903)] (check this reference)</ref>. It is given by | The '''Mie potential''' was proposed by Gustav Mie in 1903 <ref>[http://dx.doi.org/10.1002/andp.19033160802 Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik '''11''' pp. 657-697 (1903)] (Note: check the content of this reference)</ref>. It is given by | ||
:<math> \Phi_{12}(r) = \left( \frac{n}{n-m}\right) \left( \frac{n}{m}\right)^{m/(n-m)} \epsilon \left[ \left(\frac{\sigma}{r} \right)^{n}- \left( \frac{\sigma}{r}\right)^m \right] </math> | :<math> \Phi_{12}(r) = \left( \frac{n}{n-m}\right) \left( \frac{n}{m}\right)^{m/(n-m)} \epsilon \left[ \left(\frac{\sigma}{r} \right)^{n}- \left( \frac{\sigma}{r}\right)^m \right] </math> | ||
Line 17: | Line 17: | ||
'''Related reading''' | '''Related reading''' | ||
*[http://dx.doi.org/10.1016/j.physleta.2008.10.047 Pedro Orea, Yuri Reyes-Mercado, Yurko Duda "Some universal trends of the Mie(n,m) fluid thermodynamics", Physics Letters A '''372''' pp. 7024-7027 (2008)] | *[http://dx.doi.org/10.1016/j.physleta.2008.10.047 Pedro Orea, Yuri Reyes-Mercado, Yurko Duda "Some universal trends of the Mie(n,m) fluid thermodynamics", Physics Letters A '''372''' pp. 7024-7027 (2008)] | ||
*[http://dx.doi.org/10.1080/00268976.2015.1025112 N.S. Ramrattan, C. Avendaño, E.A. Müller and A. Galindo "A corresponding-states framework for the description of the Mie family of intermolecular potentials", Molecular Physics '''113''' pp. 932-947 (2015)] | |||
[[Category: Models]] | [[Category: Models]] |
Revision as of 11:34, 22 May 2015
The Mie potential was proposed by Gustav Mie in 1903 [1]. It is given by
where:
- is the intermolecular pair potential between two particles at a distance r;
- is the value of at ;
- : well depth (energy)
Note that when and this becomes the Lennard-Jones model.
(14,7) model
Second virial coefficient
The second virial coefficient and the Vliegenthart–Lekkerkerker relation [4].
References
- ↑ Gustav Mie "Zur kinetischen Theorie der einatomigen Körper", Annalen der Physik 11 pp. 657-697 (1903) (Note: check the content of this reference)
- ↑ Afshin Eskandari Nasrabad "Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids", Journal of Chemical Physics 128 154514 (2008)
- ↑ Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics 129 024507 (2008)
- ↑ V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics 134 144111 (2011)
Related reading
- Pedro Orea, Yuri Reyes-Mercado, Yurko Duda "Some universal trends of the Mie(n,m) fluid thermodynamics", Physics Letters A 372 pp. 7024-7027 (2008)
- N.S. Ramrattan, C. Avendaño, E.A. Müller and A. Galindo "A corresponding-states framework for the description of the Mie family of intermolecular potentials", Molecular Physics 113 pp. 932-947 (2015)