Stirling's approximation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
Because of [Euler-MacLaurin formula] | Because of [Euler-MacLaurin formula] | ||
:<math>\sum_{k=1}^N \ln k=\int_1^N \ln x dx+\sum_{k=1}^p\frac{B_{2k}}{2k(2k-1)}\left(\frac{1}{n^{2k-1}}-1\right)+R</math> | :<math>\sum_{k=1}^N \ln k=\int_1^N \ln x\,dx+\sum_{k=1}^p\frac{B_{2k}}{2k(2k-1)}\left(\frac{1}{n^{2k-1}}-1\right)+R</math> | ||
where ''B''<sub>1</sub> = −1/2, ''B''<sub>2</sub> = 1/6, ''B''<sub>3</sub> = 0, ''B''<sub>4</sub> = −1/30, ''B''<sub>5</sub> = 0, ''B''<sub>6</sub> = 1/42, ''B''<sub>7</sub> = 0, ''B''<sub>8</sub> = −1/30, ... are the [[Bernoulli numbers]], and ''R'' is an error term which is normally small for suitable values of ''p''. | where ''B''<sub>1</sub> = −1/2, ''B''<sub>2</sub> = 1/6, ''B''<sub>3</sub> = 0, ''B''<sub>4</sub> = −1/30, ''B''<sub>5</sub> = 0, ''B''<sub>6</sub> = 1/42, ''B''<sub>7</sub> = 0, ''B''<sub>8</sub> = −1/30, ... are the [[Bernoulli numbers]], and ''R'' is an error term which is normally small for suitable values of ''p''. | ||
Revision as of 14:37, 28 March 2007
James Stirling (1692-1770, Scotland)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\ln N!\right. = \ln 1 + \ln 2 + \ln 3 + ... + \ln N = \sum_{k=1}^N \ln k}
Because of [Euler-MacLaurin formula]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^N \ln k=\int_1^N \ln x\,dx+\sum_{k=1}^p\frac{B_{2k}}{2k(2k-1)}\left(\frac{1}{n^{2k-1}}-1\right)+R}
where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, ... are the Bernoulli numbers, and R is an error term which is normally small for suitable values of p.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\approx \int_1^N \ln x dx}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~= \left[ x \ln x - x \right]_1^N}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~= N \ln N -N +1}
Thus, for large N
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln N! \approx N \ln N -N}