Canonical ensemble: Difference between revisions
Jump to navigation
Jump to search
| Line 11: | Line 11: | ||
== Partition Function == | == Partition Function == | ||
''Classical'' Partition Function (one-component system): <math> Q_{NVT} </math> | ''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math> | ||
<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math> | <math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math> | ||
| Line 17: | Line 17: | ||
where: | where: | ||
* <math> | * <math> \Lambda </math> is the [[de Broglie wavelength]] | ||
Revision as of 19:33, 19 February 2007
Canonical Ensemble:
Variables:
- Number of Particles,
- Volume,
- Temperature,
Partition Function
Classical Partition Function (one-component system) in a three-dimensional space:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{NVT}={\frac {V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}
where:
- is the de Broglie wavelength