Square shoulder model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
m (→‎References: Added a recent publication)
Line 20: Line 20:
<references/>
<references/>
'''Related reading'''
'''Related reading'''
*[http://dx.doi.org/10.1088/0953-8984/9/1/001 A R Denton and H Löwen  "Isostructural solid - solid transitions in square-shoulder systems", Journal of Physics: Condensed Matter '''9''' pp. L1-L5  (1997)]
*[http://dx.doi.org/10.1088/0953-8984/9/1/001 A. R. Denton and H Löwen  "Isostructural solid - solid transitions in square-shoulder systems", Journal of Physics: Condensed Matter '''9''' pp. L1-L5  (1997)]
*[http://dx.doi.org/10.1088/0953-8984/9/2/006  Peter Bolhuis and Daan Frenkel "Isostructural solid - solid transitions in systems with a repulsive `shoulder' potential", Journal of Physics: Condensed Matter '''9''' pp. 381-387  (1997)]
*[http://dx.doi.org/10.1088/0953-8984/9/2/006  Peter Bolhuis and Daan Frenkel "Isostructural solid - solid transitions in systems with a repulsive `shoulder' potential", Journal of Physics: Condensed Matter '''9''' pp. 381-387  (1997)]
*[http://dx.doi.org/10.1063/1.3006065  Gernot J. Pauschenwein and Gerhard Kahl "Zero temperature phase diagram of the square-shoulder system", Journal of Chemical Physics '''129''' 174107 (2008)]
*[http://dx.doi.org/10.1063/1.3006065  Gernot J. Pauschenwein and Gerhard Kahl "Zero temperature phase diagram of the square-shoulder system", Journal of Chemical Physics '''129''' 174107 (2008)]
Line 26: Line 26:
*[http://dx.doi.org/10.1080/00268976.2011.562472 S. B. Yuste, A. Santos and M. López de Haro "Structure of the square-shoulder fluid", Molecular Physics '''109''' pp. 987-995 (2011)]
*[http://dx.doi.org/10.1080/00268976.2011.562472 S. B. Yuste, A. Santos and M. López de Haro "Structure of the square-shoulder fluid", Molecular Physics '''109''' pp. 987-995 (2011)]
*[http://dx.doi.org/10.1063/1.4801659  S. P. Hlushak, P. A. Hlushak, and A. Trokhymchuk "An improved first-order mean spherical approximation theory for the square-shoulder fluid", Journal of Chemical Physics '''138''' 164107 (2013)]
*[http://dx.doi.org/10.1063/1.4801659  S. P. Hlushak, P. A. Hlushak, and A. Trokhymchuk "An improved first-order mean spherical approximation theory for the square-shoulder fluid", Journal of Chemical Physics '''138''' 164107 (2013)]
*[http://dx.doi.org/10.1080/00268976.2016.1154199 M. López de Haro, S. B. Yuste and A. Santos "Theoretical approaches to the structural properties of the square-shoulder fluid", Molecular Physics '''114''' pp. 2382-2390 (2016)]


[[Category: Models]]
[[Category: Models]]

Revision as of 14:55, 14 September 2016

The square shoulder model is given by [1]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}\left( r \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} is the height of the shoulder, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} is the distance between site 1 and site 2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|} , σ is the hard diameter and λ > 1.

Direct correlation function

The direct correlation function [2]

Equation of State

[3].

Binary mixture

[4]

References

Related reading