Periodic boundary conditions: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
m (Corrected typo in Cite)
 
Line 8: Line 8:
<ref name="multiple1">[http://dx.doi.org/10.1080/08927029308022499 W. Smith; D. Fincham "The Ewald Sum in Truncated Octahedral and Rhombic Dodecahedral Boundary Conditions", Molecular Simulation '''10''' pp. 67-71 (1993)]</ref>
<ref name="multiple1">[http://dx.doi.org/10.1080/08927029308022499 W. Smith; D. Fincham "The Ewald Sum in Truncated Octahedral and Rhombic Dodecahedral Boundary Conditions", Molecular Simulation '''10''' pp. 67-71 (1993)]</ref>
====Rhombic dodecahedral====
====Rhombic dodecahedral====
<ref name="multiple1"> </ref>
<ref name="multiple1"></ref>
====Slab====
====Slab====
====Hexagonal prism====
====Hexagonal prism====

Latest revision as of 13:27, 18 December 2017

A liquid, in the thermodynamic limit, would occupy an infinite volume. It is common experience that one can perfectly well obtain the thermodynamic properties of a material from a more modest sample. However, even a droplet has more atoms or molecules than one can possibly hope to introduce into ones computer simulation. Thus to simulate a bulk sample of liquid it is common practice to use a 'trick' known as periodic boundary conditions. If one has a cube of atoms/molecules, the molecule leaving one side enters on the diametrically opposite side. This is analogous to the arcade video game Asteriods [1], where one can imagine the action takes place on the surface of a torus. In general, a simulation box whose dimensions are several times the range of the interaction potential works well for equilibrium properties, although in the region of a phase transition, where long-range fluctuations play an important role, problems may arise. In confined systems periodicity is only required in some spacial dimensions.

List of periodic boundary conditions[edit]

Cubic[edit]

Orthorhombic[edit]

Parallelepiped[edit]

Truncated octahedral[edit]

[2]

Rhombic dodecahedral[edit]

[2]

Slab[edit]

Hexagonal prism[edit]

See also[edit]

References[edit]

Related reading

External resources[edit]