Kern and Frenkel patchy model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
The '''Kern and Frenkel''' <ref>[http://dx.doi.org/10.1063/1.1569473 Norbert Kern and Daan Frenkel "Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction", Journal of Chemical Physics 118, 9882 (2003)]</ref> [[Patchy particles |patchy model]] is an amalgamation of the [[hard sphere model]] with
The '''Kern and Frenkel''' <ref>[http://dx.doi.org/10.1063/1.1569473 Norbert Kern and Daan Frenkel "Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction", Journal of Chemical Physics 118, 9882 (2003)]</ref> [[Patchy particles |patchy model]] is an amalgamation of the [[hard sphere model]] with
attractive [[Square well model | square well]] patches (HSSW). The potential has an angular aspect, given by (Eq. 1)
attractive [[Square well model | square well]] patches (HSSW). The model was originally developed by Bol (1982) <ref>[W. Bol, Molecular Physics 45, 605 (1982)]</ref> and later reinvented by Chapman (1988) <ref>[W.G. Chapman, Doctoral Thesis, Cornell University (1988)]</ref> <ref>[G. Jackson, W.G. Chapman, K.E. Gubbins, Molecular Physics 65, 1-31 (1988)]</ref> as the basis for numerous articles describing properties of associating particles from molecular simulation and theory. The computational advantage of Bol's model is that only a simple dot product is required to determine if a particle is in the bonding orientation.
The potential has an angular aspect, given by (Eq. 1)




Line 27: Line 28:


where <math>\delta</math> is the solid angle of a patch (<math>\alpha, \beta, ...</math>) whose axis is <math>\hat{e}</math> (see Fig. 1 of Ref. 1), forming a conical segment.
where <math>\delta</math> is the solid angle of a patch (<math>\alpha, \beta, ...</math>) whose axis is <math>\hat{e}</math> (see Fig. 1 of Ref. 1), forming a conical segment.
==Two patches==
==Multiple patches==
The "two-patch" Kern and Frenkel model has been extensively studied by Sciortino and co-workers <ref name="bianchi">[http://dx.doi.org/10.1063/1.2730797  F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia "Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation", Journal of Chemical Physics '''126''' 194903 (2007)]</ref><ref>[http://dx.doi.org/10.1063/1.3415490 Achille Giacometti, Fred Lado, Julio Largo, Giorgio Pastore, and Francesco Sciortino "Effects of patch size and number within a simple model of patchy colloids", Journal of Chemical Physics 132, 174110 (2010)]</ref><ref name="rovigatti">[http://dx.doi.org/10.1063/1.4737930  José Maria Tavares, Lorenzo Rovigatti, and Francesco Sciortino "Quantitative description of the self-assembly of patchy particles into chains and rings", Journal of Chemical Physics '''137''' 044901 (2012)]</ref>.
The "two-patch" and "four-patch" Bol (Chapman or Kern and Frenkel) model was extensively studied by Chapman and co-workers for bulk and interfacial systems using hard sphere and Lennard-Jones references.  Later other groups, including Sciortino and co-workers, considered stronger association energies for the "two-patch" hard sphere reference <ref name="bianchi">[http://dx.doi.org/10.1063/1.2730797  F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia "Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation", Journal of Chemical Physics '''126''' 194903 (2007)]</ref><ref>[http://dx.doi.org/10.1063/1.3415490 Achille Giacometti, Fred Lado, Julio Largo, Giorgio Pastore, and Francesco Sciortino "Effects of patch size and number within a simple model of patchy colloids", Journal of Chemical Physics 132, 174110 (2010)]</ref><ref name="rovigatti">[http://dx.doi.org/10.1063/1.4737930  José Maria Tavares, Lorenzo Rovigatti, and Francesco Sciortino "Quantitative description of the self-assembly of patchy particles into chains and rings", Journal of Chemical Physics '''137''' 044901 (2012)]</ref>.


==Four patches==
==Four patches==

Revision as of 01:25, 21 September 2023

The Kern and Frenkel [1] patchy model is an amalgamation of the hard sphere model with attractive square well patches (HSSW). The model was originally developed by Bol (1982) [2] and later reinvented by Chapman (1988) [3] [4] as the basis for numerous articles describing properties of associating particles from molecular simulation and theory. The computational advantage of Bol's model is that only a simple dot product is required to determine if a particle is in the bonding orientation.

The potential has an angular aspect, given by (Eq. 1)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}({\mathbf r}_{ij}; \tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j) =\Phi_{ij}^{ \mathrm{HSSW}}({\mathbf r}_{ij}) \cdot f(\tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j) }


where the radial component is given by the square well model (Eq. 2)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}^{ \mathrm{HSSW}} \left({\mathbf r}_{ij} \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ - \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }

and the orientational component is given by (Eq. 3)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ij} \left(\hat{ {\mathbf r}}_{ij}; \tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j \right) = \left\{ \begin{array}{clc} 1 & \mathrm{if} & \left\{ \begin{array}{ccc} & (\hat{e}_\alpha\cdot\hat{r}_{ij} \geq \cos \delta) & \mathrm{for~some~patch~\alpha~on~}i \\ \mathrm{and} & (\hat{e}_\beta\cdot\hat{r}_{ji} \geq \cos \delta) & \mathrm{for~some~patch~\beta~on~}j \end{array} \right. \\ 0 & \mathrm{otherwise} & \end{array} \right. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} is the solid angle of a patch (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha, \beta, ...} ) whose axis is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{e}} (see Fig. 1 of Ref. 1), forming a conical segment.

Multiple patches

The "two-patch" and "four-patch" Bol (Chapman or Kern and Frenkel) model was extensively studied by Chapman and co-workers for bulk and interfacial systems using hard sphere and Lennard-Jones references. Later other groups, including Sciortino and co-workers, considered stronger association energies for the "two-patch" hard sphere reference [5][6][7].

Four patches

Main article: Anisotropic particles with tetrahedral symmetry

Single-bond-per-patch-condition

If the two parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} fullfil the condition

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{\delta} \leq \dfrac{1}{2(1+\lambda\sigma)} }

then the patch cannot be involved in more than one bond. Enforcing this condition makes it possible to compare the simulations results with Wertheim theory [5][7]

Hard ellipsoid model

The hard ellipsoid model has also been used as the 'nucleus' of the Kern and Frenkel patchy model [8].

References

Related reading