Virial equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compresiblity factor, <math> Z </math>, in terms of either...)
 
No edit summary
Line 16: Line 16:


*<math> B_k\left( T \right) </math> is called the k-th virial coefficient
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient
==Virial coefficients==
The second virial coefficient represents the initial departure from ideal-gas behavior
<math>B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{-u/kT}) ~d\tau_1 d\tau_2
</math>
where <math>N_0</math> is [[Avogadro constant | Avogadros number]] and <math>d\tau_1</math> and <math>d\tau_2</math> are volume elements of two different molecules
in configuration space. The integration is to be performed over all available phase-space; that is,
over the volume of the containing vessel.
For the special case where the molecules posses spherical symmetry, so that <math>u</math> depends not on
orientation, but only on the separation <math>r</math> of a pair of molecules, the equation can be simplified to
:<math>B_{2}(T)= - \frac{1}{2} \int_0^\infty \left(\langle \exp\left(-\frac{u(r)}{k_BT}\right)\rangle -1 \right) 4 \pi r^2 dr</math>
Using the  [[Mayer f-function]]
:<math>f_{ij}=f(r_{ij})= \exp\left(-\frac{u(r)}{k_BT}\right) -1 </math>
one can write the third virial coefficient more compactly as
:<math>B_{3}(T)= - \frac{1}{3V} \int \int \int f_{12} f_{13} f_{23}  dr_1 dr_2 dr_3
</math>
==References==
#[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state",Reports on Progress in Physics '''7''' pp. 195-229 (1940)]


[[category:equations of state]]
[[category:equations of state]]

Revision as of 11:29, 22 May 2007

The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compresiblity factor, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } , in terms of either the density or the pressure. In the first case:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{p V}{N k_B T } = Z = 1 + \sum_{k=2}^{\infty} B_k(T) \rho^{k-1}} .

where

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } is the number of molecules
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \equiv \frac{N}{V} } is the (number) density
  • is called the k-th virial coefficient

Virial coefficients

The second virial coefficient represents the initial departure from ideal-gas behavior

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{-u/kT}) ~d\tau_1 d\tau_2 }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_0} is Avogadros number and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\tau_2} are volume elements of two different molecules in configuration space. The integration is to be performed over all available phase-space; that is, over the volume of the containing vessel. For the special case where the molecules posses spherical symmetry, so that depends not on orientation, but only on the separation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} of a pair of molecules, the equation can be simplified to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{2}(T)= - \frac{1}{2} \int_0^\infty \left(\langle \exp\left(-\frac{u(r)}{k_BT}\right)\rangle -1 \right) 4 \pi r^2 dr}

Using the Mayer f-function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ij}=f(r_{ij})= \exp\left(-\frac{u(r)}{k_BT}\right) -1 }

one can write the third virial coefficient more compactly as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{3}(T)= - \frac{1}{3V} \int \int \int f_{12} f_{13} f_{23} dr_1 dr_2 dr_3 }

References

  1. James A Beattie and Walter H Stockmayer "Equations of state",Reports on Progress in Physics 7 pp. 195-229 (1940)