Chemical potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 22: Line 22:
and <math>Q_N</math> is the [[configurational integral]]
and <math>Q_N</math> is the [[configurational integral]]
:<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math>
:<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math>
==Kirkwood charging formula==
See Ref. 2
:<math>\beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr</math>
where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]] and <math>{\rm g}(r)</math> is the [[Pair distribution function | pair correlation function]].
==See also==
==See also==
*[[Ideal gas: Chemical potential]]
*[[Ideal gas: Chemical potential]]
==References==
==References==
#[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
#[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
#[http://dx.doi.org/10.1063/1.1749657  John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics '''3''' pp. 300-313 (1935)]
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]
[[category:statistical mechanics]]
[[category:statistical mechanics]]

Revision as of 10:41, 8 June 2007

Classical thermodynamics

Definition:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=\left. \frac{\partial G}{\partial N}\right\vert_{T,p}}

where is the Gibbs energy function, leading to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=\frac{A}{Nk_B T} + \frac{pV}{Nk_BT}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is the Helmholtz energy function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume.

Statistical mechanics

The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} k_BT \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N} is the partition function for a fluid of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical particles

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N} is the configurational integral

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N}

Kirkwood charging formula

See Ref. 2

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential and is the pair correlation function.

See also

References

  1. T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics 122 pp. 1237-1260 (2006)
  2. John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics 3 pp. 300-313 (1935)