Canonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
== Partition Function ==
== Partition Function ==


''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math>
The ''classical'' [[partition function]] for a one-component system in a three-dimensional space, <math> Q_{NVT} </math>,
is given by:


:<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>
:<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>
Line 17: Line 18:
* <math> \Lambda </math> is the [[de Broglie thermal wavelength]] (depends on the temperature)
* <math> \Lambda </math> is the [[de Broglie thermal wavelength]] (depends on the temperature)


* <math> \beta = \frac{1}{k_B T} </math>, with <math> k_B </math> being the [[Boltzmann constant]]
* <math> \beta = \frac{1}{k_B T} </math>, with <math> k_B </math> being the [[Boltzmann constant]], and ''T'' the [[temperature]].


* <math> U </math> is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
* <math> U </math> is the potential energy, which depends on the coordinates of the particles (and on the interaction model)

Revision as of 10:48, 25 June 2007

Variables:

  • Number of Particles, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N }
  • Volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V }
  • Temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T }

Partition Function

The classical partition function for a one-component system in a three-dimensional space, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT} } , is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda } is the de Broglie thermal wavelength (depends on the temperature)
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = \frac{1}{k_B T} } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B } being the Boltzmann constant, and T the temperature.
  • is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( R^*\right)^{3N} } represent the 3N position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }