|
|
Line 10: |
Line 10: |
| |Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math> | | |Subscript||<code>a_2</code>||<math>a_2</math>||<math>a_2 \,\!</math> |
| |- | | |- |
| |rowspan=2|Grouping||<code>a^{2+2}</code>||<math>a^{2+2}</math>||<math>a^{2+2}\,\!</math> | | |rowspan=2|Grouping||<code>a^{2 2}</code>||<math>a^{2 2}</math>||<math>a^{2 2}\,\!</math> |
| |- | | |- |
| |<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math> | | |<code>a_{i,j}</code>||<math>a_{i,j}</math>||<math>a_{i,j}\,\!</math> |
| |- | | |- |
| |Combining sub & super||<code>x_2^3</code>||colspan=2|<math>x_2^3</math> | | |Combining sub |
| |-
| |
| |rowspan="2"|Preceding and/or Additional sub & super||<code>\sideset{_1^2}{_3^4}\prod_a^b</code>||colspan=2|<math>\sideset{_1^2}{_3^4}\prod_a^b</math>
| |
| |-
| |
| |<code>{}_1^2\!\Omega_3^4</code>||colspan=2|<math>{}_1^2\!\Omega_3^4</math>
| |
| |-
| |
| |rowspan="4"|Stacking
| |
| |<code>\overset{\alpha}{\omega}</code>||colspan="2"|<math>\overset{\alpha}{\omega}</math>
| |
| |-
| |
| |<code>\underset{\alpha}{\omega}</code>||colspan="2"|<math>\underset{\alpha}{\omega}</math>
| |
| |-
| |
| |<code>\overset{\alpha}{\underset{\gamma}{\omega}}</code>||colspan="2"|<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math>
| |
| |-
| |
| |<code>\stackrel{\alpha}{\omega}</code>||colspan="2"|<math>\stackrel{\alpha}{\omega}</math>
| |
| |-
| |
| |Derivative (forced PNG)||<code>x', y'', f', f''\!</code>|| ||<math>x', y'', f', f''\!</math>
| |
| |-
| |
| |Derivative (f in italics may overlap primes in HTML)||<code>x', y'', f', f''</code>||<math>x', y'', f', f''</math>||<math>x', y'', f', f''\!</math>
| |
| |-
| |
| |Derivative (wrong in HTML)||<code>x^\prime, y^{\prime\prime}</code>||<math>x^\prime, y^{\prime\prime}</math>||<math>x^\prime, y^{\prime\prime}\,\!</math>
| |
| |-
| |
| |Derivative (wrong in PNG)||<code>x\prime, y\prime\prime</code>||<math>x\prime, y\prime\prime</math>||<math>x\prime, y\prime\prime\,\!</math>
| |
| |-
| |
| |Derivative dots||<code>\dot{x}, \ddot{x}</code>||colspan=2|<math>\dot{x}, \ddot{x}</math>
| |
| |-
| |
| |rowspan="3"|Underlines, overlines, vectors||<code>\hat a \ \bar b \ \vec c</code>||colspan=2|<math>\hat a \ \bar b \ \vec c</math>
| |
| |-
| |
| |<code>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</code>||colspan=2|<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math>
| |
| |-
| |
| |<code>\overline{g h i} \ \underline{j k l}</code>||colspan=2|<math>\overline{g h i} \ \underline{j k l}</math>
| |
| |-
| |
| |Arrows||<code> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</code>||colspan=2|<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math>
| |
| |-
| |
| |Overbraces||<code>\overbrace{ 1+2+\cdots+100 }^{5050}</code>||colspan=2|<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math>
| |
| |-
| |
| |Underbraces||<code>\underbrace{ a+b+\cdots+z }_{26}</code>||colspan=2|<math>\underbrace{ a+b+\cdots+z }_{26}</math>
| |
| |-
| |
| |Sum||<code>\sum_{k=1}^N k^2</code>||colspan=2|<math>\sum_{k=1}^N k^2</math>
| |
| |-
| |
| |Sum (force <code>\textstyle</code>)||<code>\textstyle \sum_{k=1}^N k^2 </code>||colspan=2|<math>\textstyle \sum_{k=1}^N k^2</math>
| |
| |-
| |
| |Product||<code>\prod_{i=1}^N x_i</code>||colspan=2|<math>\prod_{i=1}^N x_i</math>
| |
| |-
| |
| |Product (force <code>\textstyle</code>)||<code>\textstyle \prod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \prod_{i=1}^N x_i</math>
| |
| |-
| |
| |Coproduct||<code>\coprod_{i=1}^N x_i</code>||colspan=2|<math>\coprod_{i=1}^N x_i</math>
| |
| |-
| |
| |Coproduct (force <code>\textstyle</code>)||<code>\textstyle \coprod_{i=1}^N x_i</code>||colspan=2|<math>\textstyle \coprod_{i=1}^N x_i</math>
| |
| |-
| |
| |Limit||<code>\lim_{n \to \infty}x_n</code>||colspan=2|<math>\lim_{n \to \infty}x_n</math>
| |
| |-
| |
| |Limit (force <code>\textstyle</code>)||<code>\textstyle \lim_{n \to \infty}x_n</code>||colspan=2|<math>\textstyle \lim_{n \to \infty}x_n</math>
| |
| |-
| |
| |Integral||<code>\int\limits_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\int\limits_{-N}^{N} e^x\, dx</math>
| |
| |-
| |
| |Integral (force <code>\textstyle</code>)||<code>\textstyle \int\limits_{-N}^{N} e^x\, dx</code>||colspan=2|<math>\textstyle \int\limits_{-N}^{N} e^x\, dx</math>
| |
| |-
| |
| |Double integral||<code>\iint\limits_{D} \, dx\,dy</code>||colspan=2|<math>\iint\limits_{D} \, dx\,dy</math>
| |
| |-
| |
| |Triple integral||<code>\iiint\limits_{E} \, dx\,dy\,dz</code>||colspan=2|<math>\iiint\limits_{E} \, dx\,dy\,dz</math>
| |
| |-
| |
| |Quadruple integral||<code>\iiiint\limits_{F} \, dx\,dy\,dz\,dt</code>||colspan=2|<math>\iiiint\limits_{F} \, dx\,dy\,dz\,dt</math>
| |
| |-
| |
| |Path integral||<code>\oint\limits_{C} x^3\, dx + 4y^2\, dy</code>||colspan=2|<math>\oint\limits_{C} x^3\, dx + 4y^2\, dy</math>
| |
| |-
| |
| |Intersections||<code>\bigcap_1^{n} p</code>||colspan=2|<math>\bigcap_1^{n} p</math>
| |
| |-
| |
| |Unions||<code>\bigcup_1^{k} p</code>||colspan=2|<math>\bigcup_1^{k} p</math>
| |
| |}
| |
| == Fractions, matrices, multilines ==
| |
| <table class="wikitable">
| |
| | |
| <tr>
| |
| <th>Feature</th>
| |
| <th>Syntax</th>
| |
| <th>How it looks rendered</th>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Fractions</td>
| |
| <td><code>\frac{2}{4}=0.5</code></td>
| |
| <td><math>\frac{2}{4}=0.5</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Small Fractions</td>
| |
| <td><code>\tfrac{2}{4} = 0.5</code></td>
| |
| <td><math>\tfrac{2}{4} = 0.5</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Large (normal) Fractions</td>
| |
| <td><code>\dfrac{2}{4} = 0.5</code></td>
| |
| <td><math>\dfrac{2}{4} = 0.5</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Large (nested) Fractions</td>
| |
| <td><code>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</code></td>
| |
| <td><math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Binomial coefficients</td>
| |
| <td><code>\binom{n}{k}</code></td>
| |
| <td><math>\binom{n}{k}</math></td>
| |
| </tr>
| |
| | |
| | |
| <tr>
| |
| <td>Small Binomial coefficients</td>
| |
| <td><code>\tbinom{n}{k}</code></td>
| |
| <td><math>\tbinom{n}{k}</math></td>
| |
| </tr>
| |
| | |
| | |
| <tr>
| |
| <td>Large (normal) Binomial coefficients</td>
| |
| <td><code>\dbinom{n}{k}</code></td>
| |
| <td><math>\dbinom{n}{k}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td rowspan="7">Matrices</td>
| |
| <td><pre>\begin{matrix}
| |
| x & y \\
| |
| z & v
| |
| \end{matrix}</pre></td>
| |
| <td><math>\begin{matrix} x & y \\ z & v
| |
| \end{matrix}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>\begin{vmatrix}
| |
| x & y \\
| |
| z & v
| |
| \end{vmatrix}</pre></td>
| |
| <td><math>\begin{vmatrix} x & y \\ z & v
| |
| \end{vmatrix}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>\begin{Vmatrix}
| |
| x & y \\
| |
| z & v
| |
| \end{Vmatrix}</pre></td>
| |
| <td><math>\begin{Vmatrix} x & y \\ z & v
| |
| \end{Vmatrix}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>\begin{bmatrix}
| |
| 0 & \cdots & 0 \\
| |
| \vdots & \ddots & \vdots \\
| |
| 0 & \cdots & 0
| |
| \end{bmatrix}</pre></td>
| |
| <td><math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
| |
| & \ddots & \vdots \\ 0 & \cdots &
| |
| 0\end{bmatrix} </math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>\begin{Bmatrix}
| |
| x & y \\
| |
| z & v
| |
| \end{Bmatrix}</pre></td>
| |
| <td><math>\begin{Bmatrix} x & y \\ z & v
| |
| \end{Bmatrix}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>\begin{pmatrix}
| |
| x & y \\
| |
| z & v
| |
| \end{pmatrix}</pre></td>
| |
| <td><math>\begin{pmatrix} x & y \\ z & v
| |
| \end{pmatrix}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>
| |
| \bigl( \begin{smallmatrix}
| |
| a&b\\ c&d
| |
| \end{smallmatrix} \bigr)
| |
| </pre></td>
| |
| <td><math>
| |
| \bigl( \begin{smallmatrix}
| |
| a&b\\ c&d
| |
| \end{smallmatrix} \bigr)
| |
| </math></td>
| |
| </tr>
| |
| | |
| | |
| | |
| <tr>
| |
| <td>Case distinctions</td>
| |
| <td><pre>
| |
| f(n) =
| |
| \begin{cases}
| |
| n/2, & \mbox{if }n\mbox{ is even} \\
| |
| 3n+1, & \mbox{if }n\mbox{ is odd}
| |
| \end{cases}</pre></td>
| |
| <td><math>f(n) =
| |
| \begin{cases}
| |
| n/2, & \mbox{if }n\mbox{ is even} \\
| |
| 3n+1, & \mbox{if }n\mbox{ is odd}
| |
| \end{cases} </math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td rowspan="2">Multiline equations</td>
| |
| <td><pre>
| |
| \begin{align}
| |
| f(x) & = (a+b)^2 \\
| |
| & = a^2+2ab+b^2 \\
| |
| \end{align}
| |
| </pre></td>
| |
| <td><math>
| |
| \begin{align}
| |
| f(x) & = (a+b)^2 \\
| |
| & = a^2+2ab+b^2 \\
| |
| \end{align}
| |
| </math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td><pre>
| |
| \begin{alignat}{2}
| |
| f(x) & = (a-b)^2 \\
| |
| & = a^2-2ab+b^2 \\
| |
| \end{alignat}
| |
| </pre></td>
| |
| <td><math>
| |
| \begin{alignat}{2}
| |
| f(x) & = (a-b)^2 \\
| |
| & = a^2-2ab+b^2 \\
| |
| \end{alignat}
| |
| </math></td>
| |
| </tr>
| |
| <tr>
| |
| <td>Multiline equations <small>(must define number of colums used ({lcr}) <small>(should not be used unless needed)</small></small></td>
| |
| <td><pre>
| |
| \begin{array}{lcl}
| |
| z & = & a \\
| |
| f(x,y,z) & = & x + y + z
| |
| \end{array}</pre></td>
| |
| <td><math>\begin{array}{lcl}
| |
| z & = & a \\
| |
| f(x,y,z) & = & x + y + z
| |
| \end{array}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Multiline equations (more)</td>
| |
| <td><pre>
| |
| \begin{array}{lcr}
| |
| z & = & a \\
| |
| f(x,y,z) & = & x + y + z
| |
| \end{array}</pre></td>
| |
| <td><math>\begin{array}{lcr}
| |
| z & = & a \\
| |
| f(x,y,z) & = & x + y + z
| |
| \end{array}</math></td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Breaking up a long expression so that it wraps when necessary</td>
| |
| <td><pre>
| |
| <nowiki>
| |
| <math>f(x) \,\!</math>
| |
| <math>= \sum_{n=0}^\infty a_n x^n </math>
| |
| <math>= a_0+a_1x+a_2x^2+\cdots</math>
| |
| </nowiki>
| |
| </pre>
| |
| </td>
| |
| <td>
| |
| <math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math>
| |
| </td>
| |
| </tr>
| |
| | |
| <tr>
| |
| <td>Simultaneous equations</td>
| |
| <td><pre>\begin{cases}
| |
| 3x + 5y + z \\
| |
| 7x - 2y + 4z \\
| |
| -6x + 3y + 2z
| |
| \end{cases}</pre></td>
| |
| <td><math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math></td>
| |
| </tr>
| |
| | |
| </table>
| |
| [[category: help]]
| |