Carnahan-Starling equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 27: Line 27:
(Eq. 2.6, 2.7 and 2.8 in Ref. 2)
(Eq. 2.6, 2.7 and 2.8 in Ref. 2)


Pressure (compressibility):  
[[Pressure]] (compressibility):  


:<math>\frac{\beta P^{CS}}{\rho} = \frac{1+ \eta + \eta^2 - \eta^3}{(1-\eta)^3}</math>
:<math>\frac{\beta p^{CS}}{\rho} = \frac{1+ \eta + \eta^2 - \eta^3}{(1-\eta)^3}</math>


Configurational chemical potential:
Configurational [[chemical potential]]:


:<math>\beta \overline{\mu }^{CS} = \frac{8\eta -9 \eta^2 + 3\eta^3}{(1-\eta)^3}</math>
:<math>\beta \overline{\mu }^{CS} = \frac{8\eta -9 \eta^2 + 3\eta^3}{(1-\eta)^3}</math>


Isothermal compressibility:
Isothermal [[compressibility]]:


:<math>\chi_T -1 = \frac{1}{kT} \left.\frac{\partial P^{CS}}{\partial \rho}\right\vert_{T} =  \frac{8\eta -2 \eta^2 }{(1-\eta)^4}</math>
:<math>\chi_T -1 = \frac{1}{kT} \left.\frac{\partial P^{CS}}{\partial \rho}\right\vert_{T} =  \frac{8\eta -2 \eta^2 }{(1-\eta)^4}</math>


where <math>\eta</math> is the [[packing fraction]].
where <math>\eta</math> is the [[packing fraction]].
== References ==
== References ==
#[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres"  Journal of Chemical Physics'''51''' , 635-636 (1969)]
#[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres"  Journal of Chemical Physics'''51''' , 635-636 (1969)]

Revision as of 10:19, 18 July 2007

The Carnahan-Starling equation of state is an approximate (but quite good) equation of state for the fluid phase of the hard sphere model in three dimensions. (Eqn. 10 in Ref 1).

where:

  • is the pressure
  • is the volume
  • is the number of particles
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta } is the packing fraction:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta = \frac{ \pi }{6} \frac{ N \sigma^3 }{V} }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the hard sphere diameter.

Thermodynamic expressions

From the Carnahan-Starling equation for the fluid phase the following thermodynamic expressions can be derived (Eq. 2.6, 2.7 and 2.8 in Ref. 2)

Pressure (compressibility):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\beta p^{CS}}{\rho} = \frac{1+ \eta + \eta^2 - \eta^3}{(1-\eta)^3}}

Configurational chemical potential:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \overline{\mu }^{CS} = \frac{8\eta -9 \eta^2 + 3\eta^3}{(1-\eta)^3}}

Isothermal compressibility:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_T -1 = \frac{1}{kT} \left.\frac{\partial P^{CS}}{\partial \rho}\right\vert_{T} = \frac{8\eta -2 \eta^2 }{(1-\eta)^4}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta} is the packing fraction.

References

  1. N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics51 , 635-636 (1969)
  2. Lloyd L. Lee "An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation", Journal of Chemical Physics 103 pp. 9388-9396 (1995)