H-theorem: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
where the function C() represents binary collisions.
where the function C() represents binary collisions.
At equilibrium, <math>\sigma = 0</math>.
At equilibrium, <math>\sigma = 0</math>.
==H-function==
Boltzmann's ''H-function'' is defined by (Eq. 5.66 Ref. 3):
:<math>H=\iint f({\mathbf V}, {\mathbf r}, t) \ln f({\mathbf V}, {\mathbf r}, t) ~ d {\mathbf r} d{\mathbf V}</math>
where <math>{\mathbf V}</math> is the molecular velocity. A restatement of the H-theorem is
:<math>\frac{dH}{dt} \leq 0</math>
==See also==
==See also==
*[[Boltzmann equation]]
*[[Boltzmann equation]]
Line 16: Line 24:
# L. Boltzmann "", Wiener Ber. '''63''' pp. 275- (1872)
# L. Boltzmann "", Wiener Ber. '''63''' pp. 275- (1872)
#[http://store.doverpublications.com/0486647412.html Sybren R. De Groot and Peter Mazur "Non-Equilibrium Thermodynamics", Dover Publications]
#[http://store.doverpublications.com/0486647412.html Sybren R. De Groot and Peter Mazur "Non-Equilibrium Thermodynamics", Dover Publications]
#[http://www.oup.com/uk/catalogue/?ci=9780195140187  Robert Zwanzig "Nonequilibrium Statistical Mechanics", Oxford University Press (2001)]
[[category: non-equilibrium thermodynamics]]
[[category: non-equilibrium thermodynamics]]

Revision as of 13:07, 24 August 2007

Boltzmann's H-theorem states that the entropy of a closed system can only increase in the course of time, and must approach a limit as time tends to infinity.

where is the entropy source strength, given by (Eq 36 Chap IX Ref. 2)

where the function C() represents binary collisions. At equilibrium, .

H-function

Boltzmann's H-function is defined by (Eq. 5.66 Ref. 3):

where is the molecular velocity. A restatement of the H-theorem is

See also

References

  1. L. Boltzmann "", Wiener Ber. 63 pp. 275- (1872)
  2. Sybren R. De Groot and Peter Mazur "Non-Equilibrium Thermodynamics", Dover Publications
  3. Robert Zwanzig "Nonequilibrium Statistical Mechanics", Oxford University Press (2001)