Van der Waals equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 15: Line 15:


The van der Waals equation of state takes into account two features that are absent in the [[Equation of State: Ideal Gas | ideal Gas]] equation of state:
The van der Waals equation of state takes into account two features that are absent in the [[Equation of State: Ideal Gas | ideal Gas]] equation of state:
 
The parameter <math> b </math> introduces somehow the repulsive behavior between pairs of molecules at short distances,  
The parameter <math> b </math> introduces somehow the '''repulsive behavior between pairs of molecules at short distances''',  
it represents the minimum molar volume of the system, whereas <math> a </math> measures the attractive interactions between the molecules. The van der Waals equation of state leads to a liquid-vapor equilibrium at low temperatures, with the corresponding critical point.
it represents the minimum molar volume of the system, whereas <math> a </math> measures the '''attractive interactions''' between the molecules. The van der Waals equation of state leads to a liquid-vapor equilibrium at low temperatures, with the corresponding critical point.


:<math>a= \frac{27}{64}\frac{R^2T_c^2}{P_c}</math>
:<math>a= \frac{27}{64}\frac{R^2T_c^2}{P_c}</math>
Line 24: Line 23:
:<math>b= \frac{RT_c}{8P_c}</math>
:<math>b= \frac{RT_c}{8P_c}</math>
==Critical point==
==Critical point==
The critical point for the van der Waals equation of state can be found at
The [[Critical points |critical point]] for the van der Waals equation of state can be found at
:<math>T_c= \frac{8a}{27bR}</math>,
:<math>T_c= \frac{8a}{27bR}</math>,


Line 30: Line 29:
and at
and at
:<math>\left.v_c\right.=3b</math>.
:<math>\left.v_c\right.=3b</math>.
==Interesting reading==
*[http://store.doverpublications.com/0486495930.html J. D. van der Waals "On the Continuity of the Gaseous and Liquid States", Dover Publications ISBN: 0486495930]
*[http://nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf Johannes Diderik van der Waals "The Equation of State for Gases and Liquids", Nobel Lecture, December 12, 1910]
*Luis Gonzalez MacDowell and Peter Virnau "El integrante lazo de Van der Waals",  Anales de la Real Sociedad Española de Química '''101''' #1 pp.  19-30 (2005)
==References==
==References==
#[http://store.doverpublications.com/0486495930.html J. D. van der Waals "On the Continuity of the Gaseous and Liquid States", Dover Publications ISBN: 0486495930]
#Luis Gonzalez MacDowell and Peter Virnau "El integrante lazo de Van der Waals",  Anales de la Real Sociedad Española de Química '''101''' #1 pp.  19-30 (2005)
#[http://nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf Johannes Diderik van der Waals "The Equation of State for Gases and Liquids", Nobel Lecture, December 12, 1910]
[[Category: equations of state]]
[[Category: equations of state]]

Revision as of 12:26, 3 September 2007

The van der Waals equation of state, developed by Johannes Diderik van der Waals, can be written as

.

where:

  • is the pressure
  • is the volume
  • is the number of moles
  • is the absolute temperature
  • is the Gas constant; , with being Avogadro constant

The van der Waals equation of state takes into account two features that are absent in the ideal Gas equation of state: The parameter introduces somehow the repulsive behavior between pairs of molecules at short distances, it represents the minimum molar volume of the system, whereas measures the attractive interactions between the molecules. The van der Waals equation of state leads to a liquid-vapor equilibrium at low temperatures, with the corresponding critical point.


Critical point

The critical point for the van der Waals equation of state can be found at

,

and at

.

Interesting reading

References