Delaunay simplexes: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Delaunay triangulation moved to Delaunay simplexes) |
Carl McBride (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Delaunay.png|thumb|An example of Delaunay triangulation in two-dimensions]] | [[Image:Delaunay.png|thumb|An example of Delaunay triangulation in two-dimensions]] | ||
A '''Delaunay | A '''Delaunay simplex''' is the dual of the [[Voronoi cells |Voronoi diagram]]. Delaunay simplexes were developed by Борис Николаевич Делоне. In two-dimensions <math>({\mathbb R}^2)</math> it is more commonly known as ''Delaunay triangulation'', and in three-dimensions <math>({\mathbb R}^3)</math>, as ''Delaunay tetrahedralisation''. | ||
==References== | ==References== | ||
#Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г. | #Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г. |
Revision as of 14:53, 7 September 2007

A Delaunay simplex is the dual of the Voronoi diagram. Delaunay simplexes were developed by Борис Николаевич Делоне. In two-dimensions it is more commonly known as Delaunay triangulation, and in three-dimensions , as Delaunay tetrahedralisation.
References
- Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г.