Flexible molecules: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 27: Line 27:


== Dihedral angles. Internal Rotation ==
== Dihedral angles. Internal Rotation ==
Bond sequence: 1-2-3-4
Dihedral angle (<math> \phi </math>) definition:
Consider the following vectors:
* <math> \vec{a}  \equiv \frac{\vec{r}_3 -\vec{r}_2}{|\vec{r}_3 -\vec{r}_2|} </math>; Unit vector in the direction of the 2-3 bond
* <math> \vec{b}  \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} }
{ |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } </math>; 
Component of <math> \vec{r}_{21} </math> that is ortogonal to <math> \vec{a} </math> (normalized)
* <math> \vec{e}_{34}  \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} }
{ |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } </math>
*<math> \vec{c} = \vec{a} \times \vec{b} </math>
*<math> e_{34} = (\cos \phi) \vec{a} + (sin \phi) \vec{c} </math>


For molecules with internal rotation degrees of freedom (e.g. ''n''-alkanes), a ''torsional'' potential is
For molecules with internal rotation degrees of freedom (e.g. ''n''-alkanes), a ''torsional'' potential is
usually modelled as:
usually modelled as:
**<math>
V_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i
</math>
or
** <math>
V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right)
</math>

Revision as of 11:48, 22 February 2007

Modelling of internal degrees of freedom, usual techniques:

Bond distances

  • Atoms linked by a chemical bond (stretching):


Bond Angles

Bond sequence: 1-2-3:

Bond Angle:

Two typical forms are used to model the bending potential:

Dihedral angles. Internal Rotation

Bond sequence: 1-2-3-4

Dihedral angle () definition:

Consider the following vectors:

  • ; Unit vector in the direction of the 2-3 bond
  • ;

Component of that is ortogonal to (normalized)

For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:

or