Flexible molecules: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
Line 57: Line 57:
V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right)
V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right)
</math>
</math>
== Van der Waals intramolecular interactions ==

Revision as of 12:43, 22 February 2007

Modelling of internal degrees of freedom, usual techniques:

Bond distances

  • Atoms linked by a chemical bond (stretching):


Bond Angles

Bond sequence: 1-2-3:

Bond Angle:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \cos \theta ={\frac {{\vec {r}}_{21}\cdot {\vec {r}}_{23}}{|{\vec {r}}_{21}||{\vec {r}}_{23}|}}}

Two typical forms are used to model the bending potential:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{bend}(\theta )={\frac {1}{2}}k_{\theta }\left(\theta -\theta _{0}\right)^{2}}

Dihedral angles. Internal Rotation

Bond sequence: 1-2-3-4 Dihedral angle (Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\phi \right.} ) definition:

Consider the following vectors:

  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\vec {a}}\equiv {\frac {{\vec {r}}_{3}-{\vec {r}}_{2}}{|{\vec {r}}_{3}-{\vec {r}}_{2}|}}} ; Unit vector in the direction of the 2-3 bond
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{b} \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} } { |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } } ; normalized component of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}_{21} } ortogonal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{a} }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{e}_{34} \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} } { |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } } ; normalized component of ortogonal to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{a} }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{c} = \vec{a} \times \vec{b} }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_{34} = (\cos \phi) \vec{a} + (\sin \phi) \vec{c} }

For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i }

or

  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{tors}\left(\phi \right)=\sum _{i=0}^{n}b_{i}\cos \left(i\phi \right)}

Van der Waals intramolecular interactions