Newtons laws: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
==Newton's first law of motion== | |||
If no external force acts on a particle, then it is possible to select a set of reference frames, called inertial reference frames, observed from which the particle moves without any change in velocity. | |||
*[[Newton's third law of motion | ====In Latin==== | ||
:''Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.'' Principia Mathematica. | |||
==Newton's second law of motion== | |||
:<math>\left. F \right.=ma</math> | |||
Where <math>F</math> is the force, <math>m</math> is the mass and <math>a</math> is the acceleration. | |||
This law has been found to be true for accelerations as small as <math>5 \times 10^{-14} m/s^2</math> (Ref. 2) | |||
====In Latin==== | |||
:''Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur.'' Principia Mathematica. | |||
====Interesting reading==== | |||
*[http://dx.doi.org/10.1063/1.1825251 Frank Wilczek "Whence the Force of F = ma? I: Culture Shock", Physics Today October pp. 11-12 (2004)] | |||
*[http://dx.doi.org/10.1063/1.1878312 Frank Wilczek "Whence the Force of F = ma? II: Rationalizations", Physics Today December pp. 10-11 (2004)] | |||
*[http://dx.doi.org/10.1063/1.2012429 Frank Wilczek "Whence the Force of F = ma? III: Cultural Diversity", Physics Today July pp. 10-11 (2005)] | |||
====References==== | |||
*[http://sciencenow.sciencemag.org/cgi/content/full/2007/413/2 Adrian Cho "No Twisting Out of Newton's Law", ScienceNOW Daily News 13 April 2007] | |||
*[http://dx.doi.org/10.1103/PhysRevLett.98.150801 J. H. Gundlach, S. Schlamminger, C. D. Spitzer, K.-Y. Choi, B. A. Woodahl, J. J. Coy, and E. Fischbach "Laboratory test of Newton's second law for small accelerations", Physical Review Letters '''98''' 150801 (2007)] | |||
==Newton's third law of motion== | |||
Whenever A exerts a force on B, B simultaneously exerts a force on A with the same magnitude in the opposite direction. | |||
====In Latin==== | |||
:''Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.'' Principia Mathematica. | |||
[[category: classical mechanics]] | [[category: classical mechanics]] |
Revision as of 11:56, 27 September 2007
Newton's first law of motion
If no external force acts on a particle, then it is possible to select a set of reference frames, called inertial reference frames, observed from which the particle moves without any change in velocity.
In Latin
- Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare. Principia Mathematica.
Newton's second law of motion
Where is the force, is the mass and is the acceleration. This law has been found to be true for accelerations as small as (Ref. 2)
In Latin
- Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur. Principia Mathematica.
Interesting reading
- Frank Wilczek "Whence the Force of F = ma? I: Culture Shock", Physics Today October pp. 11-12 (2004)
- Frank Wilczek "Whence the Force of F = ma? II: Rationalizations", Physics Today December pp. 10-11 (2004)
- Frank Wilczek "Whence the Force of F = ma? III: Cultural Diversity", Physics Today July pp. 10-11 (2005)
References
- Adrian Cho "No Twisting Out of Newton's Law", ScienceNOW Daily News 13 April 2007
- J. H. Gundlach, S. Schlamminger, C. D. Spitzer, K.-Y. Choi, B. A. Woodahl, J. J. Coy, and E. Fischbach "Laboratory test of Newton's second law for small accelerations", Physical Review Letters 98 150801 (2007)
Newton's third law of motion
Whenever A exerts a force on B, B simultaneously exerts a force on A with the same magnitude in the opposite direction.
In Latin
- Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi. Principia Mathematica.