Replica method: Difference between revisions
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) mNo edit summary |
||
| Line 35: | Line 35: | ||
:<math>- \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] | :<math>- \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] | ||
</math>. | </math>. | ||
==Interesting reading== | |||
*Viktor Dotsenko "Introduction to the Replica Theory of Disordered Statistical Systems", Collection Alea-Saclay: Monographs and Texts in Statistical Physics, Cambridge University Press (2000) | |||
==References== | ==References== | ||
#[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp. 965-974 (1975)] | #[http://dx.doi.org/10.1088/0305-4608/5/5/017 S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics '''5''' pp. 965-974 (1975)] | ||
#[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General '''9''' pp. 1595-1603 (1976)] | #[http://dx.doi.org/10.1088/0305-4470/9/10/011 S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General '''9''' pp. 1595-1603 (1976)] | ||
[[category: integral equations]] | [[category: integral equations]] | ||
Revision as of 13:57, 22 January 2008
The Helmholtz energy function of fluid in a matrix of configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ {\mathbf q}^{N_0} \}} in the Canonical ensemble is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta A_1 ({\mathbf q}^{N_0}) = \log Z_1 ({\mathbf q}^{N_0}) = \log \left( \frac{1}{N_1!} \int \exp [- \beta (H_{11}({\mathbf r}^{N_1}) + H_{10}({\mathbf r}^{N_1}, {\mathbf q}^{N_0}) )]~d \{ {\mathbf r} \}^{N_1} \right)}
where is the fluid partition function, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{11}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{10}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{00}} are the pieces of the Hamiltonian corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{00}} , we can average over matrix configurations to obtain
(see Refs. 1 and 2)
- An important mathematical trick to get rid of the logarithm inside of the integral is to use the mathematical identity
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s} .
One can apply this trick to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log Z_1} we want to average, and replace the resulting power Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (Z_1)^s} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} copies of the expression for (replicas). The result is equivalent to evaluate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{A}_1} as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\beta\overline{A}_1=\lim_{s\to 0}\frac{d}{ds}\left(\frac{Z^{\rm rep}(s)}{Z_0}\right) } ,
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z^{\rm rep}(s)} is the partition function of a mixture with Hamiltonian
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta H^{\rm rep} (r^{N_1}, q^{N_0}) = \frac{\beta_0}{\beta}H_{00} (q^{N_0}) + \sum_{\lambda=1}^s \left( H_{01}^\lambda (r^{N_1}_\lambda, q^{N_0}) + H_{11}^\lambda (r^{N_1}_\lambda, q^{N_0})\right).}
This Hamiltonian describes a completely equilibrated system of components; the matrix the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} identical non-interacting replicas of the fluid. Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0=Z^{\rm rep}(0)} , then
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{s\to 0}\frac{d}{ds}[-\beta A^{\rm rep}(s)]=\lim_{s\to 0}\frac{d}{ds}\log Z^{\rm rep}(s)=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z^{\rm rep}(s)}=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z_0}=-\beta\overline{A}_1.}
Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen system and the replicated (equilibrium) system is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] } .
Interesting reading
- Viktor Dotsenko "Introduction to the Replica Theory of Disordered Statistical Systems", Collection Alea-Saclay: Monographs and Texts in Statistical Physics, Cambridge University Press (2000)