1-dimensional Ising model: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary | mNo edit summary | ||
| Line 19: | Line 19: | ||
| </math> | </math> | ||
| Performing the sum of the possible <math> S_{N+1} </math>  | Performing the sum of the possible values of <math> S_{N+1} </math> we get: | ||
| <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K  | <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K S_N ) \right] | ||
| </math> | </math> | ||
| Taking into account that <math> \cosh(K) = \cosh(-K) </math> | |||
| <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K ) \right] | <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{kS_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1} S_N} \left[ 2 \cosh ( K ) \right] | ||
Revision as of 12:44, 23 February 2007
Model: Consider a system with spins in a row.
The energy of the system will be given by
,
where each variable can be either -1 or +1.
The partition function of the system will be:
,
where  represents the possible configuration of the N spins of the system,
and 
Performing the sum of the possible values of we get:
Taking into account that
Therefore:
The Helmholtz free energy in the thermodynamic limit will be