Chemical potential: Difference between revisions
Carl McBride (talk | contribs) m (→Classical thermodynamics: Added internal links) |
Carl McBride (talk | contribs) |
||
| Line 32: | Line 32: | ||
==See also== | ==See also== | ||
*[[Ideal gas: Chemical potential]] | *[[Ideal gas: Chemical potential]] | ||
*[[Widom test-particle method]] | |||
*[[Overlapping distribution method]] | |||
==References== | ==References== | ||
#[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | #[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | ||
Revision as of 17:23, 29 January 2008
Classical thermodynamics
Definition:
where is the Gibbs energy function, leading to
where is the Helmholtz energy function, is the Boltzmann constant, is the pressure, is the temperature and is the volume.
Statistical mechanics
The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles
where is the partition function for a fluid of identical particles
and is the configurational integral
Kirkwood charging formula
See Ref. 2
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}(r)} is the pair correlation function.
See also
References
- T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics 122 pp. 1237-1260 (2006)
- John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics 3 pp. 300-313 (1935)
- G. Cook and R. H. Dickerson "Understanding the chemical potential", American Journal of Physics 63 pp. 737-742 (1995)