1-dimensional Ising model: Difference between revisions
m (minor (I guess) misspellings) |
mNo edit summary |
||
| Line 31: | Line 31: | ||
Therefore: | Therefore: | ||
<math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N | <math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N} </math> | ||
<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | <math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | ||
Revision as of 12:57, 23 February 2007
Model: Consider a system with spins in a row.
The energy of the system will be given by
,
where each variable can be either -1 or +1.
The partition function of the system will be:
,
where represents the possible configuration of the N spins of the system,
and
Performing the sum of the possible values of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle S_{N+1}} we get:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{N+1}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N}}e^{KS_{N-1}S_{N}}\left[2\cosh(KS_{N})\right]}
Taking into account that
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{N+1}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N}}e^{KS_{N-1}S_{N}}\left[2\cosh(K)\right]}
Therefore:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N+1} = \left( 2 \cosh K \right) Q_{N} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N }
The Helmholtz free energy in the thermodynamic limit will be
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = - N k_B T \log \left( 2 \cosh K \right) }