|  |  | 
| Line 31: | Line 31: | 
|  | Therefore: |  | Therefore: | 
|  | 
 |  | 
 | 
|  | <math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N+1} </math> |  | <math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N} </math> | 
|  | 
 |  | 
 | 
|  | <math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> |  | <math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | 
		Revision as of 12:57, 23 February 2007
Model: 
Consider a system with  spins in a row.
 spins in a row.
The energy of the system will be given by
 ,
, 
where each variable  can be either -1 or +1.
 can be either -1 or +1.
The partition function of the system will be:
![{\displaystyle Q_{N}=\sum _{\Omega ^{N}}\exp \left[K\sum _{i=1}^{N-1}S_{i}S_{i+1}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1419d045395f90f5727c9e80f5550a0aa103109) ,
, 
where  represents the possible configuration of the N spins of the system,
and
 represents the possible configuration of the N spins of the system,
and  
 
Performing the sum of the possible values of  we get:
 we get:
![{\displaystyle Q_{N+1}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N}}e^{KS_{N-1}S_{N}}\left[2\cosh(KS_{N})\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fefdfea56a2ecfe1153870b0b167c87dc9e8ede0) 
Taking into account that  
![{\displaystyle Q_{N+1}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N}}e^{KS_{N-1}S_{N}}\left[2\cosh(K)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a861f068ff8b9d1ad5cd2f0f2fc1b36b34cfa9f) 
Therefore:
 
 
The Helmholtz free energy in the thermodynamic limit will be
