|  |  | 
| Line 16: | Line 16: | 
|  | and <math> K = J/k_B T </math> |  | and <math> K = J/k_B T </math> | 
|  | 
 |  | 
 | 
|  | <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1}S_N}\sum_{S_{N+1}} e^{KS_N S_{N+1} } |  | <math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}}\sum_{S_{N}} e^{K S_{N-1} S_{N} } | 
|  | </math> |  | </math> | 
|  | 
 |  | 
 | 
|  | Performing the sum of the possible values of <math> S_{N+1} </math> we get: |  | Performing the sum of the possible values of <math> S_{N} </math> we get: | 
|  | 
 |  | 
 | 
|  | <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1}S_N} \left[ 2 \cosh ( KS_N ) \right] |  | <math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-2}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K S_{N-1} ) \right] | 
|  | </math> |  | </math> | 
|  | 
 |  | 
 | 
|  | Taking into account that <math> \cosh(K) = \cosh(-K) </math> |  | Taking into account that <math> \cosh(K) = \cosh(-K) </math> | 
|  | 
 |  | 
 | 
|  | <math> Q_{N+1} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_N} e^{K S_{N-1}S_N} \left[ 2 \cosh ( K ) \right] |  | <math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K ) \right] | 
|  | </math> |  | </math> | 
|  | 
 |  | 
 | 
|  | Therefore: |  | Therefore: | 
|  | 
 |  | 
 | 
|  | <math> Q_{N+1} = \left( 2 \cosh K \right) Q_{N} </math> |  | <math> Q_{N} = \left( 2 \cosh K \right) Q_{N-1} </math> | 
|  | 
 |  | 
 | 
|  | <math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> |  | <math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | 
		Revision as of 13:03, 23 February 2007
Model: 
Consider a system with  spins in a row.
 spins in a row.
The energy of the system will be given by
 ,
, 
where each variable  can be either -1 or +1.
 can be either -1 or +1.
The partition function of the system will be:
![{\displaystyle Q_{N}=\sum _{\Omega ^{N}}\exp \left[K\sum _{i=1}^{N-1}S_{i}S_{i+1}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1419d045395f90f5727c9e80f5550a0aa103109) ,
, 
where  represents the possible configuration of the N spins of the system,
and
 represents the possible configuration of the N spins of the system,
and  
 
Performing the sum of the possible values of  we get:
 we get:
![{\displaystyle Q_{N}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N-2}}e^{KS_{N-2}S_{N-1}}\left[2\cosh(KS_{N-1})\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f50fd2dac113cb7796e8fc668815535891a6798) 
Taking into account that  
![{\displaystyle Q_{N}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N-1}}e^{KS_{N-2}S_{N-1}}\left[2\cosh(K)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb95f34f38cb6fb130eb06e3ab9a81daad4a2074) 
Therefore:
 
 
The Helmholtz free energy in the thermodynamic limit will be
