Revision as of 15:34, 23 February 2007
Model: 
Consider a system with  spins in a row.
 spins in a row.
The energy of the system will be given by
 ,
, 
where each variable  can be either -1 or +1.
 can be either -1 or +1.
The partition function of the system will be:
![{\displaystyle Q_{N}=\sum _{\Omega ^{N}}\exp \left[K\sum _{i=1}^{N-1}S_{i}S_{i+1}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1419d045395f90f5727c9e80f5550a0aa103109) ,
, 
where  represents the possible configuration of the N spins of the system,
and
 represents the possible configuration of the N spins of the system,
and  
 
Performing the sum of the possible values of  we get:
 we get:
![{\displaystyle Q_{N}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N-2}}e^{KS_{N-2}S_{N-1}}\left[2\cosh(KS_{N-1})\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f50fd2dac113cb7796e8fc668815535891a6798) 
Taking into account that  
![{\displaystyle Q_{N}=\sum _{S_{1}}\sum _{S_{2}}e^{KS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N-1}}e^{KS_{N-2}S_{N-1}}\left[2\cosh(K)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb95f34f38cb6fb130eb06e3ab9a81daad4a2074) 
Therefore:
 
 
The Helmholtz free energy in the thermodynamic limit will be
