Semi-grand ensembles: Difference between revisions
Carl McBride (talk | contribs) |
m (Slight tidy) |
||
Line 1: | Line 1: | ||
'''Semi-grand ensembles''' are used in [[Monte Carlo]] simulation of [[mixtures]]. In these ensembles the total number of molecules is fixed, but the composition can change. | |||
Semi-grand ensembles are used in Monte Carlo simulation of mixtures. In these ensembles the total number of molecules is fixed, but the composition can change. | |||
== Canonical ensemble: fixed volume, temperature and number(s) of molecules == | == Canonical ensemble: fixed volume, temperature and number(s) of molecules == | ||
We shall consider a system consisting of ''c'' components;. | We shall consider a system consisting of ''c'' components;. | ||
In the [[Canonical ensemble|canonical ensemble]], the differential | In the [[Canonical ensemble|canonical ensemble]], the differential | ||
Line 12: | Line 9: | ||
*<math> A </math> is the [[Helmholtz energy function]] | *<math> A </math> is the [[Helmholtz energy function]] | ||
*<math> \beta | *<math> \beta := 1/k_B T </math> | ||
*<math> k_B</math> is the [[Boltzmann constant]] | *<math> k_B</math> is the [[Boltzmann constant]] | ||
*<math> T </math> is the absolute [[temperature]] | *<math> T </math> is the absolute [[temperature]] | ||
Line 42: | Line 39: | ||
where <math> \left. \mu_{i1} \equiv \mu_i - \mu_1 \right. </math>. | where <math> \left. \mu_{i1} \equiv \mu_i - \mu_1 \right. </math>. | ||
* Now considering the | * Now considering the thermodynamic potential: <math> \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) </math> | ||
:<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - | :<math> d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - | ||
Line 64: | Line 61: | ||
:<math> \beta G (\beta,\beta p, N_1, N_2, \cdots N_c ) \rightarrow \beta \Phi (\beta, \beta p, N, \beta \mu_{21}, \cdots, \beta \mu_{c1} ) </math>, | :<math> \beta G (\beta,\beta p, N_1, N_2, \cdots N_c ) \rightarrow \beta \Phi (\beta, \beta p, N, \beta \mu_{21}, \cdots, \beta \mu_{c1} ) </math>, | ||
where the ''new'' | where the ''new'' thermodynamic potential <math> \beta \Phi </math> is given by: | ||
:<math> d (\beta \Phi) = d \left[ \beta G - \sum_{i=2}^c (\beta \mu_{i1} N_i ) \right] = E d \beta + V d (\beta p) + \beta \mu_1 d N | :<math> d (\beta \Phi) = d \left[ \beta G - \sum_{i=2}^c (\beta \mu_{i1} N_i ) \right] = E d \beta + V d (\beta p) + \beta \mu_1 d N |
Revision as of 09:59, 28 February 2008
Semi-grand ensembles are used in Monte Carlo simulation of mixtures. In these ensembles the total number of molecules is fixed, but the composition can change.
Canonical ensemble: fixed volume, temperature and number(s) of molecules
We shall consider a system consisting of c components;. In the canonical ensemble, the differential equation energy for the Helmholtz energy function can be written as:
- ,
where:
- is the Helmholtz energy function
- is the Boltzmann constant
- is the absolute temperature
- is the internal energy
- is the pressure
- is the chemical potential of the species
- is the number of molecules of the species
Semi-grand ensemble at fixed volume and temperature
Consider now that we wish to consider a system with fixed total number of particles,
- ;
but the composition can change, from thermodynamic considerations one can apply a Legendre transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of .
- Consider the variable change i.e.:
or,
where .
- Now considering the thermodynamic potential:
Fixed pressure and temperature
In the isothermal-isobaric ensemble: one can write:
where:
- is the Gibbs energy function
Fixed pressure and temperature: Semi-grand ensemble
Following the procedure described above one can write:
- ,
where the new thermodynamic potential is given by:
Fixed pressure and temperature: Semi-grand ensemble: partition function
In the fixed composition ensemble one has: