|
|
Line 35: |
Line 35: |
| :<math>P_6 (x) =\frac{1}{16}(231x^6 -315x^4 + 105x^2 -5)</math> | | :<math>P_6 (x) =\frac{1}{16}(231x^6 -315x^4 + 105x^2 -5)</math> |
|
| |
|
| "shifted" Legendre polynomials (which obey the orthogonality relationship): | | "shifted" Legendre polynomials (which obey the orthogonality relationship |
| | in the range [0:1]): |
|
| |
|
| :<math>\overline{P}_0 (x) =1</math> | | :<math>\overline{P}_0 (x) =1</math> |
Revision as of 17:54, 20 June 2008
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics)
are solutions of the Legendre differential equation.
The Legendre polynomial, can be defined by the contour integral
Legendre polynomials can also be defined using Rodrigues formula as:
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
- for
The first seven Legendre polynomials are:
"shifted" Legendre polynomials (which obey the orthogonality relationship
in the range [0:1]):
Powers in terms of Legendre polynomials:
See also