|
|
Line 5: |
Line 5: |
| :<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math> | | :<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math> |
|
| |
|
| '''Legendre polynomials''' can also be defined (Ref 1) using '''Rodrigues formula''' as:
| | Legendre polynomials can also be defined (Ref 1) using Rodrigues formula, used for producing a series of orthogonal polynomials, as: |
|
| |
|
| :<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | | :<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> |
Revision as of 11:36, 23 June 2008
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics)
are solutions of the Legendre differential equation.
The Legendre polynomial, can be defined by the contour integral
Legendre polynomials can also be defined (Ref 1) using Rodrigues formula, used for producing a series of orthogonal polynomials, as:
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
- for
whereas
The first seven Legendre polynomials are:
"shifted" Legendre polynomials (which obey the orthogonality relationship
in the range [0:1]):
Powers in terms of Legendre polynomials:
See also
References
- B. P. Demidotwitsch, I. A. Maron, and E. S. Schuwalowa, "Métodos numéricos de Análisis", Ed. Paraninfo, Madrid (1980) (translated from Russian text)