Sutherland potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (Better defined r)
Line 2: Line 2:


:<math>
:<math>
\Phi\left( r \right) =  
\Phi_{12}\left( r \right) =  
\left\{ \begin{array}{lll}
\left\{ \begin{array}{lll}
\infty & ; & r \leq \sigma \\
\infty & ; & r \leq \sigma \\
Line 9: Line 9:
</math>
</math>


where <math> \Phi\left( r \right) </math> is the [[intermolecular pair potential]], <math> r </math> is the distance,  
where <math> \Phi_{12}\left( r \right) </math> is the [[intermolecular pair potential]], <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math> is the distance between site 1 and site 2,  
<math> \sigma </math> is the hard diameter, <math> \epsilon </math> is the energy well depth (<math> \epsilon > 0 </math>), and
<math> \sigma </math> is the hard diameter, <math> \epsilon </math> is the energy well depth (<math> \epsilon > 0 </math>), and
<math> \gamma </math> is a parameter that controls the interaction range.
<math> \gamma </math> is a parameter that controls the interaction range.

Revision as of 14:54, 17 July 2008

The Sutherland potential is given by

where is the intermolecular pair potential, is the distance between site 1 and site 2, is the hard diameter, is the energy well depth (), and is a parameter that controls the interaction range.

References

  1. D. Levi and M. de Llano "Closed form of second virial coefficient for Sutherland potential", Journal of Chemical Physics 63 pp. 4561-4562 (1975)
  2. A. Díez, J. Largo and J. R. Solana "Structure and thermodynamic properties of Sutherland fluids from computer simulation and the Tang–Lu integral equation theory", Fluid Phase Equilibria 253 pp. 67-73 (2007)
  3. Jianguo Mi, Yiping Tang, and Chongli Zhong "Theoretical study of Sutherland fluids with long-range, short-range, and highly short-range potential parameters", Journal of Chemical Physics 128 054503 (2008)