Ideal gas Helmholtz energy function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
m (defined a couple of terms)
 
Line 13: Line 13:
:<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>
:<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>


where <math>\Lambda</math>is the [[de Broglie thermal wavelength]] and <math>k_B</math> is the [[Boltzmann constant]].
[[Category:Ideal gas]]
[[Category:Ideal gas]]
[[Category:Statistical mechanics]]
[[Category:Statistical mechanics]]

Latest revision as of 11:19, 4 August 2008

From equations

for the canonical ensemble partition function for an ideal gas, and

for the Helmholtz energy function, one has

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A=-k_{B}T\left(\ln {\frac {1}{N!}}+N\ln {\frac {V}{\Lambda ^{3}}}\right)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left(-\ln N! + N\ln\frac{N}{\Lambda^3 \rho}\right)}

using Stirling's approximation

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =-k_{B}T\left(-N\ln N+N+N\ln N-N\ln \Lambda ^{3}\rho \right)}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda} is the de Broglie thermal wavelength and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant.