Sackur–Tetrode equation: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) (New page: {{stub-general}} ==References== #[http://dx.doi.org/10.1002/andp.19133450103 O. Sackur "Die universelle Bedeutung des sog. elementaren Wirkungsquantums", Annalen der Physik '''40''' pp. 67...) |
Carl McBride (talk | contribs) m (Added equation.) |
||
Line 1: | Line 1: | ||
{{stub-general}} | {{stub-general}} | ||
The '''Sackur–Tetrode equation''' provides the [[entropy]] (<math>S</math>) of an [[ideal gas]] (classical). It is given by | |||
:<math>S=N k_B \ln \left[ \left( \frac{2 \pi m k_B T}{h^2} \right)^{3/2} \frac{k_BT}{p} \exp(5/2)\right]</math> | |||
where <math>k_B</math> is the [[Boltzmann constant]], <math>T</math> is the [[temperature]], <math>p</math> is the [[pressure]], <math>m</math> is the mass of the gas particle, <math>N</math> is the numer of particles and <math>h</math> is the [[Planck constant]]. | |||
==References== | ==References== | ||
#[http://dx.doi.org/10.1002/andp.19133450103 O. Sackur "Die universelle Bedeutung des sog. elementaren Wirkungsquantums", Annalen der Physik '''40''' pp. 67-86 (1913)] | #[http://dx.doi.org/10.1002/andp.19133450103 O. Sackur "Die universelle Bedeutung des sog. elementaren Wirkungsquantums", Annalen der Physik '''40''' pp. 67-86 (1913)] |
Latest revision as of 18:39, 4 November 2008
The Sackur–Tetrode equation provides the entropy () of an ideal gas (classical). It is given by
where is the Boltzmann constant, is the temperature, is the pressure, is the mass of the gas particle, is the numer of particles and is the Planck constant.
References[edit]
- O. Sackur "Die universelle Bedeutung des sog. elementaren Wirkungsquantums", Annalen der Physik 40 pp. 67-86 (1913)
- H. Tetrode "Die chemische Konstante der Gase und das elementare Wirkungsquantum", Annalen der Physik 38 pp. 434-442 (1912)
- H. Tetrode "Berichtigung zu meiner Arbeit: 'Die chemische Konstante der Gase und das elementare Wirkungsquantum'", Annalen der Physik 39 pp. 255-256 (1913)