Stirling's approximation: Difference between revisions
Carl McBride (talk | contribs) m (Added some unverified history.) |
Carl McBride (talk | contribs) m (Added a reference.) |
||
| Line 51: | Line 51: | ||
==Applications in statistical mechanics== | ==Applications in statistical mechanics== | ||
*[[Ideal gas Helmholtz energy function]] | *[[Ideal gas Helmholtz energy function]] | ||
==References== | |||
#J. Stirling "Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium", London (1730). English translation by J. Holliday "The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series" (1749) | |||
[[Category: Mathematics]] | [[Category: Mathematics]] | ||
Revision as of 17:55, 5 November 2008
Stirling's approximation is named after the Scottish mathematician James Stirling (1692-1770).
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\ln N!\right. = \ln 1 + \ln 2 + \ln 3 + ... + \ln N = \sum_{k=1}^N \ln k .}
using Euler-MacLaurin formula one has
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sum _{k=1}^{N}\ln k=\int _{1}^{N}\ln x\,dx+\sum _{k=1}^{p}{\frac {B_{2k}}{2k(2k-1)}}\left({\frac {1}{n^{2k-1}}}-1\right)+R,}
where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, ... are the Bernoulli numbers, and R is an error term which is normally small for suitable values of p.
Then, for large N,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln N! \sim \int_1^N \ln x\,dx \sim N \ln N -N .}
after some further manipulation one arrives at (apparently Stirling's contribution was the prefactor of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2 \pi}} )
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N! = \sqrt{2 \pi N} \; N^{N} e^{-N} e^{\lambda_N}}
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{12N+1} < \lambda_N < \frac{1}{12N}.}
For example:
| N | N! (exact) | N! (Stirling) | Error (%) |
| 2 | 2 | 1.91900435 | 4.22 |
| 3 | 6 | 5.83620959 | 2.81 |
| 4 | 24 | 23.5061751 | 2.10 |
| 5 | 120 | 118.019168 | 1.67 |
| 6 | 720 | 710.078185 | 1.40 |
| 7 | 5040 | 4980.39583 | 1.20 |
| 8 | 40320 | 39902.3955 | 1.05 |
| 9 | 362880 | 359536.873 | 0.93 |
| 10 | 3628800 | 3598695.62 | 0.84 |
When one is dealing with numbers of the order of the Avogadro constant (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{23}} ) this formula is essentially exact. In computer simulations the number of atoms or molecules (N) is invariably greater than 100; for N=100 the percentage error is approximately 0.083%.
Applications in statistical mechanics
References
- J. Stirling "Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium", London (1730). English translation by J. Holliday "The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series" (1749)