Microcanonical ensemble: Difference between revisions
Jump to navigation
Jump to search
| Line 26: | Line 26: | ||
*<math> \delta \left( x \right) </math> is the [[Dirac delta distribution|Dirac delta function]] | *<math> \delta \left( x \right) </math> is the [[Dirac delta distribution|Dirac delta function]] | ||
== Thermodynamics == | |||
: <math> \left. S = k_B \log Q_{NVE} \right. </math> | |||
where: | |||
*<math> \left. S \right. </math> is the [[entropy]] | |||
== References == | == References == | ||
# D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press | # D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press | ||
Revision as of 11:30, 27 February 2007
Microcanonical Ensemble (Clasical statistics):
Ensemble variables
(One component system, 3-dimensional system, ... ):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. N \right. } : Number of Particles
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. V \right. } : Volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. E \right. } : Internal energy (kinetic + potential)
Partition function
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E). }
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. h \right. } is the Planck constant
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( q \right)^{3n} } represents the 3N Cartesian position coordinates.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( p \right)^{3n} } represents the 3N momenta.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H \left(p,q\right) } represent the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \left( x \right) } is the Dirac delta function
Thermodynamics
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. S = k_B \log Q_{NVE} \right. }
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. S \right. } is the entropy
References
- D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press