Lebwohl-Lasher model: Difference between revisions
mNo edit summary |
|||
| Line 17: | Line 17: | ||
(Mondal, Roy; Physics Letters A, 2003, 312, 397-410) | (Mondal, Roy; Physics Letters A, 2003, 312, 397-410) | ||
(Chiccoli, C.; Pasini, P. & Zannoni, C., Physica, 1988, 148A, 298-311) | (Chiccoli, C.; Pasini, P. & Zannoni, C., Physica, 1988, 148A, 298-311) | ||
==Lattice Gas Lebwohl-Lasher model== | |||
==References== | ==References== | ||
Revision as of 14:11, 19 February 2009
The Lebwohl-Lasher model is a lattice version of the Maier-Saupe mean field model of a nematic liquid crystal. The Lebwohl-Lasher model consists of a cubic lattice with the pair potential
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij} = -\epsilon_{ij} P_2 (\cos \beta_{ij}) }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{ij} > 0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta_{ij}} is the angle between nearest neighbour particles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2} is a second order Legendre polynomial.
Isotropic-nematic transition
(Ref. 3)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^*_{NI^*}= \frac{k_BT_{NI}}{\epsilon}=1.1201 \pm 0.0006}
Planar Lebwohl–Lasher model
The planar Lebwohl-Lasher appears when the lattice considered is two-dimensional. This system exhibits a Kosterlitz-Touless continuous transition. (Mondal, Roy; Physics Letters A, 2003, 312, 397-410) (Chiccoli, C.; Pasini, P. & Zannoni, C., Physica, 1988, 148A, 298-311)
Lattice Gas Lebwohl-Lasher model
References
- P. A. Lebwohl and G. Lasher "Nematic-Liquid-Crystal Order—A Monte Carlo Calculation", Physical Review A 6 pp. 426 - 429 (1972)
- U. Fabbri and C. Zannoni "A Monte Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition", Molecular Physics pp. 763-788 58 (1986)