Lebwohl-Lasher model: Difference between revisions
(→Isotropic-nematic transition: another estimation from the literature) |
|||
Line 11: | Line 11: | ||
:<math>T^*_{NI}= \frac{k_BT_{NI}}{\epsilon}=1.1232 \pm 0.0006</math> | :<math>T^*_{NI}= \frac{k_BT_{NI}}{\epsilon}=1.1232 \pm 0.0006</math> | ||
More recently N. V. Priezjev and Robert A. Pelcovits <ref>[http://dx.doi.org/10.1103/PhysRevE.63.062702 | More recently N. V. Priezjev and Robert A. Pelcovits <ref>[http://dx.doi.org/10.1103/PhysRevE.63.062702 N. V. Priezjev and Robert A. Pelcovits ''Cluster Monte Carlo simulations of the nematic-isotropic transition'' Phys. Rev. E 63, 062702 (2001) [4 pages]] </ref> used a Monte Carlo [[cluster algorithms|cluster algorithm]] and got: | ||
''Cluster Monte Carlo simulations of the nematic-isotropic transition'' Phys. Rev. E 63, 062702 (2001) [4 pages] | |||
]</ref> used a Monte Carlo [[cluster algorithms|cluster algorithm]] and got: | |||
:<math>T^*_{NI}= \frac{k_BT_{NI}}{\epsilon}=1.1225 \pm 0.0001 </math> | :<math>T^*_{NI}= \frac{k_BT_{NI}}{\epsilon}=1.1225 \pm 0.0001 </math> |
Revision as of 19:43, 23 February 2009
The Lebwohl-Lasher model is a lattice version of the Maier-Saupe mean field model of a nematic liquid crystal [1][2]. The Lebwohl-Lasher model consists of a cubic lattice occupied by uniaxial nematogenic particles with the pair potential
where , is the angle between the axes of nearest neighbour particles and , and is a second order Legendre polynomial.
Isotropic-nematic transition
Fabbri and Zannoni estimated the transition temperature [3] using Monte Carlo simulation:
More recently N. V. Priezjev and Robert A. Pelcovits [4] used a Monte Carlo cluster algorithm and got:
Planar Lebwohl–Lasher model
The planar Lebwohl-Lasher appears when the lattice considered is two-dimensional. This system exhibits a Kosterlitz-Touless continuous transition [5] [6].
Lattice Gas Lebwohl-Lasher model
This model is the lattice gas version of the Lebwohl-Lasher model. In this case the sites of the lattice can be occupied by particles or empty. The interaction between nearest-neighbour particles is that of the Lebwohl-Lasher model. This model has been studied in [7].
References
- ↑ P. A. Lebwohl and G. Lasher "Nematic-Liquid-Crystal Order—A Monte Carlo Calculation", Physical Review A 6 pp. 426 - 429 (1972)
- ↑ Erratum, Physical Review A 7 p. 2222 (1973)
- ↑ U. Fabbri and C. Zannoni "A Monte Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition", Molecular Physics pp. 763-788 58 (1986)
- ↑ N. V. Priezjev and Robert A. Pelcovits Cluster Monte Carlo simulations of the nematic-isotropic transition Phys. Rev. E 63, 062702 (2001) [4 pages]
- ↑ Enakshi Mondal and Soumen Kumar Roy "Finite size scaling in the planar Lebwohl–Lasher model", Physics Letters A 312 pp. 397-410 (2003)
- ↑ C. Chiccoli, P. Pasini, and C. Zannoni "A Monte Carlo investigation of the planar Lebwohl-Lasher lattice model", ĥysica A 148 pp. 298-311 (1988)
- ↑ Martin A. Bates "Computer simulation study of the phase behavior of a nematogenic lattice-gas model", Physical Review E 64 051702 (2001)