Ideal gas Helmholtz energy function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 11: Line 11:
one arrives at  
one arrives at  


<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>
:<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>
 
[[Category:Ideal gas]]
[[Category:Statistical mechanics]]

Revision as of 12:05, 27 February 2007

From equations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_B T \ln Q_{NVT}}

one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left(-\ln N! + N\ln\frac{N}{\Lambda^3 \rho}\right)}

using Stirling's approximation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left( -N\ln N +N + N\ln N - N\ln \Lambda^3 \rho \right)}

one arrives at

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A=Nk_{B}T\left(\ln \Lambda ^{3}\rho -1\right)}