Ideal gas Helmholtz energy function: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) mNo edit summary |
mNo edit summary |
||
| Line 11: | Line 11: | ||
one arrives at | one arrives at | ||
<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math> | :<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math> | ||
[[Category:Ideal gas]] | |||
[[Category:Statistical mechanics]] | |||
Revision as of 12:05, 27 February 2007
From equations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.A\right.=-k_B T \ln Q_{NVT}}
one has
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left(-\ln N! + N\ln\frac{N}{\Lambda^3 \rho}\right)}
using Stirling's approximation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-k_BT\left( -N\ln N +N + N\ln N - N\ln \Lambda^3 \rho \right)}
one arrives at
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle A=Nk_{B}T\left(\ln \Lambda ^{3}\rho -1\right)}